Efficient Hardware-Assisted Out-of-Place Update
for Non-Volatile Memory”*

Miao Caif
Computer Science
Nanjing University

Abstract—Byte-addressable non-volatile memory (NVM) is a
promising technology that provides near-DRAM performance
with scalable memory capacity. However, it requires atomic
data durability to ensure memory persistency. Therefore, many
techniques, including logging and shadow paging, have been
proposed. However, most of them either introduce extra write
traffic to NVM or suffer from significant performance overhead
on the critical path of program execution, or even both.

In this paper, we propose a transparent and efficient hardware-
assisted out-of-place update (HOOP) mechanism that supports
atomic data durability, without incurring much extra writes and
performance overhead. The key idea is to write the updated data
to a new place in NVM, while retaining the old data until the
updated data becomes durable. To support this, we develop a
lightweight indirection layer in the memory controller to enable
efficient address translation and adaptive garbage collection
for NVM. We evaluate HOOP with a variety of popular data
structures and data-intensive applications, including key-value
stores and databases. Qur evaluation shows that HOOP achieves
low critical-path latency with small write amplification, which
is close to that of a native system without persistence support.
Compared with state-of-the-art crash-consistency techniques, it
improves application performance by up to 1.7 x, while reducing
the write amplification by up to 2.1x. HOOP also demonstrates
scalable data recovery capability on multi-core systems.

I. BACKGROUND AND MOTIVATION

Non-volatile memory (NVM) like PCM, STT-RAM,
ReRAM, and 3D XPoint offers promising properties, such as
byte-addressability, non-volatility, and scalable capacity. Un-
like DRAM-based systems, applications using NVM require
memory persistency to ensure crash safety, which means a
set of data updates must behave in an atomic, consistent, and
durable manner, with respect to system failures and crashes.

Ensuring memory persistency with commodity out-of-order
processors and hardware-controlled cache hierarchies, how-
ever, is challenging and costly due to unpredictable cache
evictions. Prior researches have developed various crash-
consistency techniques for NVM, such as logging, shadow
paging, and their optimized versions. However, they either
introduce extra write traffic to NVM, or suffer from signif-
icant performance overhead on the critical path of program
execution, or even both.

Specifically, although logging provides strong atomic dura-
bility against system crashes, it introduces significant over-
heads (see Table I). First, both undo logging and redo logging

*This work has been pubilished at ISCA’20 [1].
TWork done while visiting the Systems Platform Research Group at UTUC.

Chance C. Coats, Jeonghyun Woo, Jian Huang
Systems Platform Research Group, ECE Department
University of Illinois at Urbana-Champaign

must make a data copy before performing the in-place update.
Persisting these data copies incurs extra writes to NVM on
the critical path of program execution. This not only decreases
application performance, but also hurts NVM lifetime. Second,
enforcing the correct persistence ordering between log and
data updates requires cache flushes and memory fences, which
further causes significant performance overheads.

To address the aforementioned problems, researchers re-
cently proposed asynchronous in-place updates, in which the
systems maintain an explicit main copy of data to perform in-
place updates, and then asynchronously apply these changes
to the data copy, or asynchronously persist the undo logs
to NVM. Unfortunately, it does not mitigate the problem of
incurring additional write traffic, due to the background data
synchronization. An alternative technique, shadow paging,
incurs both additional data writes to NVM and performance
overhead on the critical path, due to its copy-on-write (CoW)
mechanism, as shown in Table I. Although an optimized
shadow paging method that enables data copies at cache-line
granularity was proposed, it requires TLB modifications to
support the cache-line remapping. Another approach is the
software-based log-structured memory, which reduces the per-
sistency overhead by appending all updates to logs. However, it
requires multiple memory accesses to identify the data location
for each read, which incurs significant critical-path latency.

II. DESIGN AND IMPLEMENTATION

In this paper, we propose a transparent hardware-assisted
out-of-place (OOP) update approach, named HOoOP. The key
idea of HOOP is to store the updated data outside of their
original locations in dedicated memory regions in NVM, and
then apply these updates lazily through an efficient garbage
collection scheme. HOOP reduces data persistence overheads
in three aspects. First, it eliminates the extra writes caused by
the logging mechanisms, as the old data copies already exist
in NVM and logging is not required. Second, the out-of-place
update does not assume any persistence ordering for store
operations, which allows them to execute in a conventional
out-of-order manner. Third, persisting the new updates in new
locations does not affect the old data version, which inherently
supports the atomic data durability.

Since the update is written to a new place in NVM,
we develop a lightweight indirection layer in the memory
controller to handle the physical address remapping. HOOP

TABLE I: Comparison of various crash-consistency techniques for NVM. Compared with existing works, HOOP provides a
transparent hardware solution that significantly reduces the write traffic to NVM, while achieving low persistence overhead.

Approach Subtype Read Latency On the Critical Path Require Flush & Fence Write Traffic
Undo Low Yes No Medium/High
Logging Redo High Yes Yes Medium/High
Undo+Redo High Yes No High
Shadow Page Low Yes Yes High
paging Cache line Low Yes Yes Low
Log-structured NVM High No No Medium
Hoop Low No No Low
out-of-place update performance, when flushing the updated cache lines to the
""""""" > OOP region. With the out-of-place writes, HOOP is crash-safe
[S EhgEe] by ensuring committed transactions are per51s'tef1 in the OOP
7y : region before any changes are made to the original addresses
Load ¥ Store v

Memory [Mapping Table][OOP Data Buffer T

Controller Eviction Buffer
S

A Data Packing

[Home Region] [OOP Region]

.............................

Garbage Collection
Fig. 1: HooOP performs out-of-place writes and reduces write
traffic with data packing and coalescing. To reduce the storage
overhead, HOOP adaptively migrates data in the out-of-place
(OOP) region back to the home region with optimized GC.

enables high-performance and low-cost out-of-place update
with four major components. First, we organize the dedicated
memory regions for storing data updates in a log-structure
manner, and apply data packing to the out-of-place updates.
This makes HOOP best utilize the memory bandwidth of NVM
as well as reduce the write traffic to NVM. Second, to reduce
the memory space cost caused by the out-of-place updates,
Hoop develops an efficient garbage collection (GC) algorithm
to adaptively restore the out-of-place updates back to their
home locations. To further reduce the data movement overhead
during GC, we exploit a data coalescing scheme that combines
the updates to the same cache lines. Therefore, HOOP only
need to restore multiple data updates once, which further
reduces the additional write traffic. Third, HOOP maintains
a hash-based address-mapping table in HOOP for physical-to-
physical address translation, and ensures that load operations
always read the updated data from NVM with trivial address
translation overhead. Since the entries in the address-mapping
table will be cleaned when the corresponding out-of-place
updates are periodically written back to their home addresses,
the mapping table size is small. Fourth, HOOP enables fast
data recovery by leveraging the thread parallelism available in
multi-core computing systems.

We present the architectural overview of HOOP in Figure 1.
During transaction execution, data is brought into the cache
hierarchy with 1oad and st ore operations. They will access
the indirection layer to find the most recent version of the
desired cache line. For the updated cache lines in a transaction,
they are buffered in the OOP data buffer in HOOP. Each
entry of this buffer can hold multiple data updates as well
as the associated metadata. And persistence optimizations
such as data packing are applied to improve the transaction

(i.e., the home region). As OOP region will be filled with
updated data and metadata, HOOP performs periodic GC to
migrate the most recent data versions to the home region, and
uses data coalescing to minimize the write traffic to NVM.
Upon power failures or system crashes, HOOP will leverage
thread parallelism to scan the OOP region and instantly recover
the data to a consistent state.

As HooP is developed in the memory controller, it is
transparent to upper-level systems software. No non-volatile
cache or TLB modifications for address translation are re-
quired. Unlike software-based logging approaches that suffer
from long critical-path latency for read operations, HOOP
provides an efficient hardware solution with low performance
overhead and write traffic. In summary, we make the following
contributions in this paper:

« We present a hardware out-of-place update scheme to ensure
the crash-consistency for NVM, which alleviates extra write
traffic and avoids critical-path latency overhead in NVM.

« We propose a lightweight persistence indirection layer in
the memory controller with minimal hardware cost, which
makes out-of-place updates transparent to software systems.

« We present an efficient and adaptive GC scheme, which will
apply the recent data updates from the out-of-place update
memory regions to their original locations for memory space
saving and write traffic reduction.

III. EVALUATION

We developed HOOP in a Pin-based many-core simulator,
McSimA+, with the combination of an NVM simulator. We
evaluated HOOP against four representative crash-consistency
approaches, including undo logging, redo logging, optimized
shadow paging, and log-structured NVM. We used a set of
microbenchmarks running against these popular data structures
like hashmaps, and real-world application workloads like
Yahoo Cloud Service Benchmark (YCSB) and transactional
databases. Experimental results demonstrate that HOOP signif-
icantly outperforms state-of-the-art approaches, while ensuring
the same atomic durability as existing crash-consistency tech-
niques. We presented the detailed evaluation in [1].

REFERENCES

[1] M. Cai, C. C. Coats, and J. Huang, “Hoop: efficient hardware-
assisted out-of-place update for non-volatile memory,” in Proceedings
of the ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA’20), Virtual Event, 2020. [Online]. Available:
http://jianh.web.engr.illinois.edu/papers/hoop-isca2020.pdf

http://jianh.web.engr.illinois.edu/papers/hoop-isca2020.pdf

