
BlockFlex: Enabling Storage Harvesting
with Software-Defined Flash in Modern Cloud Platforms

Benjamin Reidys∗ Jinghan Sun∗ Anirudh Badam† Shadi Noghabi† Jian Huang

University of Illinois at Urbana-Champaign †Microsoft Research

Abstract
Cloud platforms today make efficient use of storage resources
by slicing them among multi-tenant applications on demand.
However, our study discloses that cloud storage is still seriously
underutilized for both allocated and unallocated storage. Al-
though cloud providers have developed harvesting techniques
to allow evictable virtual machines (VMs) to use unallocated re-
sources, these techniques cannot be directly applied to storage
resources, due to the lack of systematic support for the isolation
of space, bandwidth, and data security in storage devices.

In this paper, we present BlockFlex, a learning-based
storage harvesting framework, which can harvest available
flash-based storage resources at a fine-grained granularity
in modern cloud platforms. We rethink the abstractions of
storage virtualization and enable transparent harvesting of
both allocated and unallocated storage for evictable VMs.
BlockFlex explores both heuristics and learning-based
approaches to maximize the storage utilization, while ensuring
the performance and security isolation between regular
and evictable VMs at the storage device level. We develop
BlockFlex with programmable solid-state drives (SSDs) and
demonstrate its efficiency with various datacenter workloads.

1 Introduction

In modern cloud platforms, storage devices such as flash-based
solid-state drives (SSDs) have been virtualized as system-wide
shared resources to provide storage services across multiple
application instances [6, 10, 15, 30, 39, 65]. This enables
cloud platforms to make efficient use of storage capacity
and bandwidth by slicing them among multiple multi-tenant
virtual machines (VMs) [44,61,75]. However, our study of the
event traces collected from popular cloud platforms [3, 10, 23]
reveals that storage I/O is still significantly underutilized for
both unallocated (unsold) and allocated storage. For instance,
we find that 40% of the cloud storage servers have 25% of

*Co-primary authors.

their storage unallocated, and the I/O utilization of allocated
storage is under 33% on average (see Figure 1 and §2.1).

To improve the resource efficiency in the cloud, providers
offer evictable VMs (i.e., Spot VMs or Harvest VMs) [4,5,24].
These evictable VMs allow users to use unallocated resources
with low priority, i.e., the resources of evictable VMs can
be reclaimed by regular VMs at any time. Recent stud-
ies [6, 49, 69, 76] advanced this technique by improving the
resource allocation and scheduling for evictable VMs with
heuristic-based harvesting approaches.

However, prior work on resource harvesting mainly focused
on CPU and memory resources, which cannot be directly
be applied to cloud storage for three reasons. First, current
cloud storage virtualization approaches do not support
storage harvesting, and dynamic reallocation of resources is
not feasible. Second, cloud storage usually stores sensitive
application data, which requires careful management for
storage allocation and deallocation. Third, cloud storage
can suffer from significant harvesting overhead due to the
block erasure and metadata updates, which requires specific
optimizations for enabling efficient storage harvesting.

In this paper, we present BlockFlex, the first learning-based
storage harvesting framework, which enables transparent
storage harvesting for both allocated and unallocated storage
at a fine-grained granularity, while ensuring data privacy for
cloud users with low harvesting overhead.

To develop BlockFlex, we first conduct a characterization
study of storage resources that could be harvested in a cloud
platform. According to our study (see §2), we find that for
unallocated VMs configured with 512GB SSD, 78%, 43%,
and 25% of them can be harvested and used for 1 hour, 6 hours,
and 12 hours, respectively. This provides us the heuristic
information about how these unallocated storage resources
can be utilized. As for the allocated storage for VMs, an
average of 70% can be harvested, however, the time available
for harvesting varies depending on the workloads running
in the VMs. Our study discloses the dynamics of available
storage resources, which drives us to develop a learning-based
approach for assisting the storage harvesting.

To enable transparent and fine-grained storage harvesting,
we rethink the abstractions of storage virtualization for flash-
based SSDs. The recent development of software-defined flash
(SDF) in datacenters [30, 52] allows VMs to map their storage
to dedicated flash channels. We build on top of the SDF ab-
straction and propose a new class of virtualized SSDs, named
ghost vSSD. A ghost vSSD is created by harvesting free flash
blocks from either unallocated or allocated but unused storage.
The ghost vSSD provides the flexibility for fine-grained
storage allocation and deallocation as well as block-level
state tracking. It enables storage harvesting at the device level,
which is transparent to the upper-level applications running on
the VMs. Each ghost vSSD aims to meet the storage capacity
and bandwidth requests from an evictable VM, however if
needed, they can be reclaimed by regular VMs at any time.

However, frequent preemption and harvesting will in-
evitably introduce performance overheads to both regular VMs
and evictable VMs, and even cause VM recreations. Therefore,
it is desirable to provision the best-fit storage resource for an
evictable VM. To achieve this, we develop learning-based
techniques to predict the storage demands as well as the
storage resources available for harvesting, in terms of storage
capacity, bandwidth, and the duration available for harvesting.
With these predictions, for each ghost vSSD, BlockFlex
ensures the harvested storage resource will maximally meet
the requirements of evictable VMs, while minimizing the
opportunity of being preempted unexpectedly by regular VMs.

BlockFlex uses the Long Short-Term Memory (LSTM) net-
work for online predictions at runtime, because of its low over-
head and ability to make time-series predictions. We improve
the prediction accuracy by developing different LSTM models
for different dimensions of storage properties. For the pre-
dictions of storage capacity, bandwidth, and the time avail-
able for harvesting, BlockFlex can reach at 94.1%, 95.3%, and
93.1% accuracy, respectively, with slight over-provisioning.
Upon mispredictions, BlockFlex implements different excep-
tion handlers for different cases (see the details in Table 1).
As mispredictions do not happen frequently, the performance
impact of misprediction handling is negligible in BlockFlex.

To minimize the performance interference between
the regular VM and evictable VM caused by the storage
harvesting, we assign higher priority to I/O requests from
regular VMs when sharing the same SSDs with evictable VMs.
When the harvested storage needs to be reclaimed, its flash
blocks will be erased first to ensure data security, and then
returned back to the corresponding regular VMs. Overall, we
make the following contributions in this paper.

• We conduct a characterization study of the storage efficiency
in different cloud platforms, our observations motivate the
desirable need for storage harvesting.

• We rethink the abstractions of storage virtualization in
modern cloud platforms for enabling fine-grained storage
harvesting with software-defined flash.

0 1 2 3 4 5 6 7
Time (days)

0
5

10
15
20
25
30
35

St
or

ag
e

B
W

 U
til

 (%
)

(a) Storage utilization per VM.

0 1 2 3 4 5 6 7
Time (days)

0
5

10
15
20
25
30
35

St
or

ag
e

B
W

 U
til

 (%
)

(b) Storage utilization per server.

Figure 1: The bandwidth utilization of allocated cloud storage.

• We build a learning-based storage harvesting framework
named BlockFlex that can harvest both unallocated and
allocated storage resources.

• We develop lightweight predictors that can make efficient
predictions for both storage demand and availability in
terms of storage capacity, bandwidth, and the time available
for harvesting.

• We implement BlockFlex with real programmable SSDs
and show its efficiency with various datacenter workloads.

Our experiments show that BlockFlex can improve the
overall storage utilization by up to 1.75× in cloud platforms.
BlockFlex is lightweight, it incurs trivial additional overheads
to cloud platforms. BlockFlex can improve the performance
of evictable VMs running with batch-processing workloads by
1.68× on average, while having negligible negative impact on
the performance of regular VMs. The codebase of BlockFlex
is available at https://github.com/platformxlab/blockflex.

2 Characterization for Storage Harvesting

Although storage virtualization has been widely deployed
in cloud platforms, we observe that storage devices are still
significantly underutilized, in terms of both storage bandwidth
and capacity. In this section, we first quantify the cloud storage
utilization, and then we conduct a hypothetical analysis of the
opportunities for storage harvesting.

2.1 Cloud Storage Utilization
The storage underutilization in cloud platforms is due to both
the poor utilization of allocated storage resources and the large
portion of unallocated resources, as we discuss below.
Allocated storage resources. We conduct the storage
utilization study based on the open-source cloud traces from
Alibaba [3] and Google [23]. These traces track the usage
of allocated storage resources across both VMs and physical
servers. Alibaba cloud traces contain the VM utilization logs
of 4K servers over 8 days, and Google cloud traces were
collected from 12.5K servers over 29 days. As different cloud
traces emphasize different aspects of the cloud storage usage
(e.g., storage capacity, I/O bandwidth, server utilization, and

https://github.com/platformxlab/blockflex

0 20 40 60 80 100
Percentage of VMs (%)

0
20
40
60
80

100
St

or
ag

e
C

ap
ac

ity

 U
til

iz
at

io
n

(%
)

Maximum
Average
Minimum

Figure 2: The capacity utilization of allocated cloud storage.

0 20 40 60 80 100
Percentage of Servers (%)

0
20
40
60
80

100

U
ns

ol
d

St
or

ag
e

(%
)

Maximum
Average
Minimum

Figure 3: Unallocated storage in cloud servers.

VM utilization), we analyze both traces. We summarize our
study results as follows:

• Storage bandwidth: We show the bandwidth utilization of
Alibaba cloud [3] in Figure 1. The bandwidth utilization
of allocated storage across all VMs is below 33%, and the
average bandwidth utilization across all VMs over their
entire lifetime is 9.2%. For physical servers that usually
host multiple VMs, we obtain a similar trend: the bandwidth
utilization of the physical storage devices is below 31%, and
the average bandwidth utilization is 8.6%.

• Storage capacity: We present the cumulative distribution of
storage capacity across the VMs of Google cloud [23] in Fig-
ure 2. We find that 20% of the VMs almost did not use their
allocated storage capacity, 50% of the VMs used only 26.4%
of the allocated storage capacity on average, and only 20% of
the VMs used up to 90% of their allocated storage. Although
different VMs may allocate different storage capacities, our
study shows that their capacity utilization is surprisingly low.

The low utilization of allocated cloud storage resources
is mainly due to two major reasons. First, cloud platforms
usually allocate storage resource associated with each VM at a
coarse-grained granularity for simplified storage management.
For instance, the storage capacity of a VM in the Azure Cloud
is linearly proportional to the number of allocated processor
cores [6, 76], no matter whether the VM is I/O-intensive
or CPU-intensive. Second, storage allocation is usually
conducted in a static manner, while the storage usage of the
workloads running in each VM changes dynamically over
time. Therefore, the user of a VM has to over-provision
sufficient storage for the peak demand upon VM creation.
Unallocated (unsold) storage resource. Beyond the al-
located storage, the unallocated (unsold) storage in cloud
platforms is another source for storage underutilization. This
is because cloud providers usually over-provision VMs in
their resource pool to satisfy the elasticity requirement from
customers [6]. As each unsold VM consumes a fixed amount

10% 25% 50%
Harvested Bandwidth

0
20
40
60
80

100

%
 o

f V
M

s

1 hr 6 hrs 12 hrs 3 days

Figure 4: The availability of allocated storage for harvesting.

of resources (e.g., processor cores, memory, and storage), it
will result in storage resources unallocated.

To further understand the unallocated storage, we analyze
the cloud traces of unsold storage resources from Azure
Cloud [6]. The traces include the VM allocation/deallocation
logs for about 1,400 servers over 24 hours. As shown in
Figure 3, nearly 70% of cloud servers have unsold storage
resources, 50% of the servers have an average of 17.3% of
their storage unallocated, and 20% of the servers have at least
20.1% of their storage unallocated. Given that a datacenter
has thousands of servers, the unallocated storage is another
critical source for the storage underutilization.

2.2 Opportunities for Storage Harvesting
As discussed in §2.1, we identify two sources for storage
harvesting: unallocated storage and allocated storage. In
this part, we conduct a hypothetical analysis of these storage
resources to understand their potential for storage harvesting.
Analysis methodology. We study the cloud traces as dis-
cussed in §2.1, with a focus on the storage resource allocation
and deallocation. We analyze the available storage in allocated
and unallocated VMs over time, and check (1) whether we
can harvest storage from them for a hypothetical harvest
VM requesting a certain amount of storage capacity; (2) how
long the harvested storage can last; (3) how many storage
resources we can potentially harvest for the hypothetical
harvest VMs. Note that Google and Alibaba cloud traces only
report normalized numbers, so we use percentages rather than
absolute numbers in our analysis.
Allocated storage resource. We first apply the hypothetical
analysis on the allocated storage resource. Given a hypo-
thetical harvest VM requesting different percentages (10%,
25%, and 50%) of storage bandwidth from a regular VM, we
investigate how many servers have such available bandwidth,
and how long these resources are available for harvesting.
We report the average percentage across the entire trace. The
results are summarized in Figure 4. We observe that more than
91% of the servers have harvestable bandwidth for 12 hours,
and about 76% of the servers have harvestable bandwidth for 3
days. As we harvest storage for a shorter time (i.e., less than 12
hours), the portion of the available servers is consistently high.
This is due to the constant low storage utilization of allocated
VMs, as shown in Figure 1.
Unallocated storage resource. We now explore the unallo-
cated storage resource. Given a hypothetical harvest VM that

128GB 256GB 512GB
Storage capacity

0

20

40

60
%

 o
f s

er
ve

rs
1 hr
6 hrs
12 hrs

Figure 5: The availability of unallocated storage for harvesting.

2 4 6 8 10 12
Harvestable Hours

0

20

40

60

80

100

%
 o

f V
M

s

128 GB
256 GB
512 GB

Figure 6: The availability of unsold regular VMs for storage
harvesting with different capacities.

requests different storage capacities (128GB, 256GB, and
512GB), we analyze how many servers can satisfy the request
from this harvest VM, and how long the available storage can
last. We present the study results in Figure 5. Our study finds
that 32% of the servers can satisfy the requirement of 128GB
storage capacity for 12 hours. If the harvest VM requests
storage for a shorter time, such as 1 hour, 50% of the servers
can meet the request. As harvest VM increases the requested
storage capacity, the number of harvestable servers decreases.

We also study unsold regular VMs. We vary the storage
capacity request from 128GB to 512GB for the hypothetical
harvest VM, and demonstrate our study results in Figure 6. For
a hypothetical harvest VM of 128GB storage capacity, 94%,
76%, and 62% of the unsold regular VMs can be harvested for
1 hours, 6 hours, and 12 hours, respectively. As we increase the
requested storage capacity for the harvest VM, the percentage
of available unsold regular VMs drops. However, we still find
a decent amount of unsold regular VMs can be harvested. For
instance, for the harvest VM that requests 512GB storage
capacity, 43% and 24% of the unsold VMs are available for
6 hours and 12 hours, respectively.

It is worth noting that the storage bandwidth is usually
allocated proportionally with storage capacity in cloud
platforms [20, 30]. This is also reflected in the cloud traces we
studied in this paper. For instance, as for the VM with 128GB,
256GB, and 512GB, the storage bandwidth is 192 MB/s, 384
MB/s, and 768 MB/s, respectively. Thus, our study on the
unsold storage capacity also applies to the storage bandwidth.
Takeaways. Our characterization study shows that:

• Both unallocated and allocated storage have sufficient
storage capacity and bandwidth for harvesting, and they are
available long enough to facilitate harvesting.

• The harvestable storage resource varies depending on
the storage capacity and time available for harvesting.

vSSD vSSD vSSD vSSD

SSD Virtualization

Flash

Flash

Flash
Controller

Channel 0

Flash

Flash

Flash
Controller

Channel 1

Flash

Flash

Flash
Controller

Channel 2

Flash

Flash

Flash
Controller

Channel 3

Figure 7: Storage virtualization with software-defined flash.

Harvesting a large storage capacity for a longer time has a
lower chance of identifying the available storage resource.

• The harvestable storage resource from unallocated VMs and
allocated VMs shows different availability patterns and trade-
offs. We have a larger chance to harvest storage in allocated
VMs, but this may have interference with the regular VM.
The harvestable storage from unallocated VMs is limited,
but it has no impact on the performance of regular VMs.

With BlockFlex, we aim to improve the cloud storage
utilization by harvesting the available storage resources from
both allocated and unallocated storage.

3 Technical Background

To facilitate our discussion, we first present the essential
technical background of storage virtualization in cloud
platforms, and then discuss the harvest VMs that will benefit
from storage harvesting.

3.1 Storage Virtualization and SDF
In modern cloud platforms, storage virtualization has become
the backbone of the storage infrastructures, in which storage
devices such as flash-based solid-state drives (SSDs) are
virtualized and shared by multiple VMs in order to improve
storage utilization [30, 39, 61, 65]. The storage virtualization
layer provides the system abstraction of virtualized storage
devices (e.g., virtual disks) and hides the underlying hardware
complexities from upper-level VMs. Each VM can have one or
more virtual storage devices, and each virtual storage device
can be mapped to one or more physical storage devices.

At the same time, SSDs are increasingly being adopted
by cloud providers for their low latency and high through-
put [1, 30, 31, 47]. Internally, an SSD consists of multiple flash
channels, each channel has multiple flash chips, and each chip
has thousands of flash blocks (see Figure 7). Each channel
can issue I/O requests independently, thus, offering high
parallelism and performance isolation. SSDs can only write
data to free blocks, and once a free block is written, it is no
longer available for future writes until it is erased. However, the
erase operation is time-consuming. Thus, writes are issued to

flash blocks that have been erased in advance (i.e., out-of-place
update). Because of this, SSDs employ a flash translation layer
(FTL) to maintain the logical-to-physical address mapping,
and manage the garbage collection (GC) operations.

To ultimately exploit the performance benefits of SSDs in the
cloud, software-defined flash (SDF) was developed [40,52]. In
the context of SSD virtualization, SDF allows the upper-level
VM to map its virtual SSD (vSSD) to a set of flash channels,
as shown in Figure 7. Therefore, cloud providers can allocate
storage capacity and bandwidth to each vSSD per its request
by allocating fewer/more flash channels, following the pay-as-
you-go model, while enabling the device-level performance
isolation between vSSDs. The vSSD performs like a conven-
tional storage disk, it provides the block interface to upper-level
software, and uses a mapping table to index the logical-to-
physical block address mappings [30, 52]. As SDF enables
various cloud services such as Database-as-a-Service (DaaS)
and Infrastructure-as-a-Service (IaaS) to achieve predictable
storage performance and satisfy their service level objectives
(SLOs), it has become an essential component in modern cloud
platforms [17, 32, 56, 57, 64]. In this work, we develop Block-
Flex based on the software-defined flash infrastructure.

3.2 Harvest Virtual Machine

To improve the resource utilization in cloud platforms, a few
VM techniques have been developed recently [4–6, 13, 21, 59,
69]. Cloud providers offer evictable VMs or Spot VMs that run
with lower priority than regular VMs, they can be evicted if re-
sources are needed by a regular VM [4,5]. With evictable VMs,
cloud providers can sell unsold resources at a lower price while
providing resource guarantees for regular VMs. Therefore,
cloud customers usually rent evictable VMs to run batch-
processing workloads or similar applications that have lower
requirements on resource guarantees. Based on the evictable
VMs, researchers developed harvest VM [6], elastic VM [69],
and memory-harvesting VM [21], which further improve the
cloud resource utilization by enabling flexible and dynamic
harvesting of unallocated resources. To simplify the discussion,
we will use harvest VM to represent these aforementioned
VMs for resource harvesting in the remainder of the paper.

A majority of these harvest VMs were developed to harvest
CPU and memory resources, and none of them can be directly
applied to the storage resources. Additionally, prior work
proposed various VM scheduling techniques by co-locating
multi-tenant applications on the shared bare-metal servers to
improve the resource efficiency [42, 44, 66, 71]. However, our
study of various cloud traces discloses that the storage utiliza-
tion is still a severe issue within modern cloud platforms. Since
storage virtualization today assumes exclusive ownership of
storage resources for each VM, it inevitably causes storage
underutilization. In this work, we enable the storage harvesting
for harvest VMs to improve the cloud storage utilization.

4 Design and Implementation

In this section, we first discuss the design goals and challenges
of BlockFlex. After that, we will present the overview of the
system as well as the design and implementation details of
each component.

4.1 Design Goals and Challenges
As we develop BlockFlex to enable efficient storage harvesting,
we aim to achieve the following goals:

• The storage harvesting should satisfy the storage require-
ments from harvest VMs while minimizing unexpected
preemptions by regular VMs.

• The storage harvesting should be transparent to the upper-
level VM to minimize changes to the VM and applications,
as well as facilitate its production deployment.

• The storage harvesting should have minimal negative
impact on the regular VMs to guarantee the quality of cloud
services as we improve the global storage utilization.

• The storage harvesting should ensure the data safety, when
it temporarily allocates unused data blocks from both
allocated and unallocated storage to the harvest VMs.

Since cloud platforms today do not provide system support
for storage harvesting, it is not easy to achieve the above goals.
Additionally, existing resource harvesting techniques cannot
be directly applied to storage resources. Specifically, we have
to overcome the following challenges. First, cloud customers
usually rely on the storage to permanently store their data, the
data durability and availability are critical for storage services.
This makes the storage harvesting fundamentally more
challenging than the harvesting of CPU and memory resources.
For example, shrinking available storage (upon reclamation)
may result in data loss, while reclaiming memory and CPU
resources mainly causes reduced performance. Second, the
storage virtualization and management are different from that
of CPU and memory resources, especially for SSDs that have
intrinsic properties (see §3.1). Therefore, sharing storage re-
sources while maintaining isolation among tenants needs new
techniques. Third, storage allocation and deallocation usually
incur more performance overhead than the context switch
overhead caused by harvesting CPU and memory resources,
which requires special development efforts for enabling the
deployment of storage harvesting in cloud platforms.

4.2 System Overview
To the best of our knowledge, BlockFlex is the first storage
harvesting framework built based on modern software-defined
storage infrastructure. We present the system architecture
of BlockFlex in Figure 8. To manage the harvested storage,
we propose a new abstraction, named ghost vSSD (gSSD),
on top of software-defined flash (§4.3). The ghost vSSDs

vSSD Manager
ghost vSSD

ghost vSSD
......

Unallocated VM Regular VM HarvestVM HarvestVM

Online
Predictor

vSSD
Online

Predictor

vSSD
Online

Predictor

vSSD
Heuristic-based

Predictor

vSSD

SSD Virtualization

Harvested
Storage

 BlockFlex

Figure 8: System overview of BlockFlex.

can be attached to created vSSDs , therefore, no changes are
required to VMs. BlockFlex will deploy a predictor in each
vSSD (§4.4). For harvest VMs, BlockFlex will predict their
demanded storage capacity and bandwidth, as well as how
long the demand will last. For regular VMs, BlockFlex will
predict their available storage capacity and bandwidth, as
well as their available time. For unused storage resources,
BlockFlex will use both heuristic-based approaches to predict
the duration time available for harvesting. Based on the
prediction, BlockFlex will make a best-fit match and allocate
unused storage to the harvest VM. In case resource preemption
happens to the harvest VM (caused by misprediction),
BlockFlex will release the harvested storage to the regular VM
and handle the exceptions for different scenarios (§4.5).

Since BlockFlex enables storage harvesting at the system
virtualization level, it does not change the upper-level dura-
bility model (e.g., data replication) offered by current cloud
storage infrastructures. For harvest VMs, cloud platforms
assume their end users are aware of the relaxed durability
guarantees and their applications may suffer from early
reclamations. BlockFlex makes the best effort to allocate new
gSSDs to ensure the data durability for harvest VMs. However,
similar to Spot VMs [63], the owners of harvest VMs should
be aware of the risk and take responsibility for their data as
the cost of harvest VMs is much lower than regular VMs. As
BlockFlex is deployed on top of existing software-defined
storage infrastructure, it runs in a distributed environment
where the global control plane manages the gSSDs and their
allocations/deallocations. In the following section, we will
discuss each technique proposed in BlockFlex, respectively.

4.3 New Abstraction for Storage Harvesting
As discussed in §3.1, with software-defined flash, the storage
virtualization can map each virtual SSD to a number of flash
channels depending on the storage capacity and bandwidth
requested by the associated VM. We show two typical exam-
ples in Figure 9. Suppose we have a 1TB SSD that contains 16
channels. Each channel has 64GB and delivers a bandwidth of
70MB/s. As shown in Figure 9 (a), the cloud platform allocates
two flash channels to vSSD-2 (128GB), leaving other flash

...

CHCH CH

vSSD-1

CH CH

vSSD-2

(a) Allocated and Unallocated vSSDs (b) Harvest available storage

...

CHCH CH

vSSD-2

CH CH

vSSD-1

gSSD-2
gSSD-1

Figure 9: Examples of harvesting storage. CH: flash channel;
vSSD-1: unsold storage; vSSD-2: allocated storage; gSSD-1:
harvest unsold storage; gSSD-2: harvest allocated storage.

channels temporarily unused (e.g., vSSD-1). Both vSSD-1 and
vSSD-2 could provide opportunities for storage harvesting.
For example, as shown in Figure 9(b), the entire unsold vSSD-1
(gSSD-1) and part of the allocated vSSD-2 (gSSD-2) could
be harvested depending on their availability. The SDF offers
the flexibility to allocate fewer/more resources to each gSSD.

However, the harvested storage still belongs to the original
vSSDs, which could be preempted by existing or newly
allocated regular VMs. Since the availability of harvested
storage varies depending on the workloads in the cloud
platform, it increases the complexity of storage harvesting.

4.3.1 Definition of Ghost vSSD

To simplify the management of harvested storage, we develop
the gSSD abstraction. Its block interface is the same as that
of the regular vSSD. Therefore, no code modifications are
required for the VMs. Similar to vSSDs, each gSSD has a
block-level mapping table to index the mappings of logical
block addresses to physical block addresses , and a free block
list to manage the free flash blocks. However, since each gSSD
is created/borrowed from regular vSSDs and has a different
lifetime (the time available for harvesting), we maintain a
metadata structure for each gSSD, as shown in Figure 10.

The metadata of a gSSD includes its maximum bandwidth
and capacity. We use the number of flash channels to represent
the storage bandwidth, and the number of flash blocks to
represent the storage capacity. As the actual storage bandwidth
and capacity offered by a gSSD could vary at runtime, we
use their maximum values because they are provided on a
best-effort basis. We use the expire to indicate when the gSSD
will no longer be available for use. This value is predicted
with our duration predictor (see the detailed discussion in
§4.4). The metadata structure also has a bit in_use to indicate
whether the gSSD has been assigned to a harvest VM or not.
If yes, the vm_id stores the ID of the corresponding harvest
VM. The home pointer points to the regular vSSD from which
the blocks in the gSSD are harvested. The ghost points to the
created ghost vSSD after storage harvesting. The metadata
is stored in the gSSD. It is initialized when the gSSD is created
and updated when the gSSD is harvested/reclaimed.

typedef struct vmeta {

} vmeta_t;

 int bandwidth ; maximum bandwidth of gSSD
 int capacity ; maximum capacity of gSSD
 int expire ; how long the gSSD lasts

 struct vssd* home ; vSSD that owns these blocks
 struct vssd* ghost ; points to the attached gSSD

 boolean in_use ; used by harvest VM or not
 string vm_id ; harvest VM ID

Figure 10: Metadata of a ghost vSSD in BlockFlex.

4.3.2 Management of Ghost vSSDs

We now discuss the gSSD creation and management.
Creating gSSDs. Instead of harvesting storage upon requests,
BlockFlex allows regular vSSDs to proactively create gSSDs
and add them into the gSSD pool managed by the vSSD
manager (see Figure 8). This removes the harvesting procedure
from the critical path. A vSSD creates a gSSD when its
predictor predicts that it will have available storage resources
for harvesting. These predictions occur at regular intervals
(every three minutes by default). In order to create a new
gSSD, BlockFlex will harvest free blocks from the vSSD and
create a mapping table for them. Following our prior study
on SDF [30], we use block-level address mapping tables
for indexing flash blocks in the gSSDs/vSSDs. We align the
address mapping granularity and flash erase granularity to
simplify the storage management with improved efficiency.
And each gSSD/vSSD has its own mapping table. Although
the flash blocks of a gSSD could be harvested from a vSSD, the
corresponding gSSD and vSSD will not share these harvested
flash blocks. Therefore, we do not need to synchronize the
mapping table entries between the gSSD and vSSD at runtime.

The metadata of a gSSD (Figure 10) is initialized with the
number of flash channels harvested (bandwidth), the number
of free blocks (capacity), and the predicted time the resources
will be available for use (expire). The home of the gSSD will
point to the regular vSSD, and the ghost will point to the newly
created gSSD. At the same time, the gSSD will be added to
the gSSD pool for serving future harvesting requests.

To simplify the management of gSSDs, we only create
a gSSD when harvesting a chunk of resources. BlockFlex
enables the storage harvesting at the granularity of a flash
channel, 16GB size, and 30-minute for storage bandwidth,
capacity, and duration time, respectively. To ensure reasonable
performance isolation between regular VMs and harvest VMs,
we restrict each vSSD to provide only one gSSD.
Managing gSSDs. To facilitate fast gSSD lookup, we organize
gSSDs in a set of lists in the vSSD manager with considering
the sorting in three dimensions: storage bandwidth, capacity,
and time available for harvesting. We optimize the lists based
on our observations that (1) the storage bandwidth and capacity
are correlated with the number of channels available in a vSSD;
(2) the time available for harvesting for each gSSD needs to be
updated at regular intervals; and (3) we will not update the max-

32GB,70MB/s

gSSD

gSSD
gSSD gSSD gSSD

A
Se

t o
f L

in
ke

d
Li

st
s

BW: 70MB/s
Capacity: 32GB

Expire: 2 hrs

Home: vSSD

32GB,140MB/s

256GB,280MB/s
256GB,140MB/s

32GB,280MB/s

<Capacity, Bandwidth>

Ghost: N/A

In-use: 0
VM_id: N/A

Sorted by Expiration Time

Figure 11: The organization of the gSSD pool in BlockFlex.

imum storage capacity and bandwidth over the lifetime of a
gSSD. Therefore, as shown in Figure 11, BlockFlex maintains
a set of gSSD lists sorted by <capacity, bandwidth>. In each list,
the gSSDs are sorted by their expiration time from the farthest
one to the nearest one. There is a timer running periodically
(per 15 minutes by default) to update the expire time in the
gSSD pool. For the expired gSSDs but have not been allocated
to any harvest VM, BlockFlex will remove them from the list.
Harvesting gSSDs. Upon receiving a request for storage
harvesting, BlockFlex will check the gSSD pool to identify
a best-fit match for the requested storage capacity, bandwidth,
and time available for harvesting. BlockFlex uses the best-fit
matching policy to minimize the waste of storage resources.
These requested parameters are obtained from the predictors
deployed in the vSSD of the corresponding harvest VM (see
§4.4). Since the gSSD pool is sorted, we use the binary search
to first locate the corresponding list that matches with the
requested storage capacity and bandwidth. After that, we walk
through the list until identifying an available gSSD whose
expire time matches with the requested harvestable time.

Once a gSSD is identified in the pool, we set its in_use to
1 to indicate this gSSD has been assigned to a harvest VM
and the corresponding harvest VM ID is recorded. BlockFlex
supports concurrent gSSD allocations by managing the gSSD
lists using non-blocking linked-lists implementation with the
compare-and-swap operations [28]. Compared to the lifetime
of a gSSD (hours or even days), the gSSD allocation overhead
(a few microseconds) is trivial.

With a harvested gSSD, BlockFlex will assign its flash
blocks to the vSSD of the corresponding harvest VM. This
harvesting procedure is transparent to the harvest VM, as we
track these blocks in the mapping table of the vSSD of the har-
vest VM, as shown in Figure 12. The address mapping table in
the vSSD is extended to include the ID of the harvested gSSD.
Therefore, upon data accesses from the harvest VM, its vSSD
will conduct the address translation to translate the logical
block address (LBA) to [gSSD-ID, gLBA]. With the obtained
gSSD-ID, the corresponding gSSD will translate the gLBA to
the physical block address (PBA). This enables BlockFlex to
harvest multiple gSSDs for a harvest VM. With the expanded
vSSD, the harvest VM can resize the vSSD and its file system
with existing virtual disk and file system tools [14, 19, 67].
Note that the address mapping of a vSSD will also index the

Harvest VM

Virtual SSD (vSSD)

Address Mapping (LBA-->[gSSD-ID, gLBA])

Default Storage

gSSD-1 gSSD-2 gSSD-N

Addr
Mapping

Addr
Mapping

Addr
Mapping

Harvested Storage

Figure 12: Harvesting multiple ghost vSSDs for a harvest VM.

default storage allocated when a harvest VM is created.
We assume each harvest VM will not request more than

256 gSSDs, so 1 byte is used to index the gSSDs. In total, each
address mapping entry takes 9 bytes (4 bytes for LBA and
4 bytes for PBA). Given a harvest VM that requests 128GB
storage, and each flash block is 4MB, the block-level address
mapping of a vSSD will take only 288KB.
Reclaiming gSSDs. When a harvest VM finishes its jobs, the
harvested gSSDs will be reclaimed to the pool in the vSSD
manager. Upon the gSSD reclamation, the corresponding
entries in the address mapping table of the vSSD will be
removed. BlockFlex will check whether a gSSD will expire
soon or not (i.e., in 30 minutes by default). If yes, BlockFlex
will erase the flash blocks for data safety, and remove the
gSSD instance. Otherwise, BlockFlex will add the gSSD into
the gSSD pool for future harvesting. Since the erase operation
is expensive, BlockFlex leverages the channel parallelism of
an SSD to execute them in parallel.

The additional erase operations caused by gSSD reclama-
tion has minimal impact on the lifetime of SSDs. This is for
two major reasons. First, BlockFlex ensures wear leveling of
SSDs by following a relaxed wear-leveling scheme proposed
in our prior study [30]. It showed that SDF can achieve
near-ideal SSD lifetime by swapping channels every 19 days
on average for data center workloads, and 12 days on average
for the worst case of erasing channels at full bandwidth. The
wear leveling plays a fundamental role of ensuring the device
lifetime, no matter whether flash blocks are used by regular
VMs or harvest VMs. Second, the harvesting procedure itself
only introduces erases when harvested storage is reclaimed,
and it happens infrequently. Based on our study, for a given
vSSD, it is harvested about every 2.1 days and consumes an
average of 25% of the SSD (see §5.2), meaning the entire
vSSD is erased once per 8.4 days. For modern SSDs that
usually have 10K P/E cycles and can last 5-year lifetime, the
storage harvesting operations will consume about 2% of the
device lifetime, which is acceptable in practice.

In addition, with the assistance of predictors (see §4.4),
BlockFlex minimizes the chances of early reclamation, and
takes the erase operations from the critical path. However,
a reclamation would still happen, even though a gSSD is in
use by a harvest VM. This could be caused by the resource
preemption issued by a regular VM. We will discuss how
BlockFlex handles this in details in §4.5.

Capacity
Predictor

Learning Rate: 0.04
Hidden Layer Size: 4

Bandwidth
Predictor

Learning Rate: 0.001
Hidden Layer Size: 16

<maxiops, miniops,>
Duration
Predictor

Channels = 1
Channels = 2

Duration
Selector

Duration
Predictor

Input for LSTM

Output

Bandwidth

Capacity

Duration

I/O
Traces

Figure 13: The workflow of the predictors used in BlockFlex.

4.4 Predictions for Storage Harvesting

Instead of relying on the cloud customers or VM users to
specify their demanded or unused storage resource, we use
a lightweight online learning approach to predict them. As
discussed in §4.2, each vSSD has an online predictor, except
those for the unallocated (unsold) VMs.

4.4.1 Heuristic-based Prediction for Unsold VMs

For the unallocated (unsold) VMs, we use a heuristic-based
approach, based on our study characterizing the unallocated
storage in cloud platforms (see §2). Recall that cloud providers
usually over-provision VMs to provide the elasticity for their
services. They reserve different regular VMs with various
storage capacities. The common sizes include 128GB, 256GB,
and 512GB for simplified VM management and deployment.
According to our study in Figure 6, their availability for
harvesting varies by their capacities.

Previous harvesting studies have identified that past
values are a useful indicator for the available time of unsold
storage [6]. In our study of unsold storage resource, we confirm
that the available time of unsold storage for harvesting is stable.
For this reason, we tag each unsold VM with a predicted du-
ration time using the histogram of previous available times for
the unsold VM with the same storage capacity. For instance, for
the unsold VMs with 512GB storage capacity, we can use 20%
of them as gSSDs that would be available for 12 hours, 20% for
6 hours, and the remaining for 1 hour. This distribution could
change depending on the heuristic study of the corresponding
cloud platform. The distribution of these gSSD sizes depends
on the configured storage capacities for the unsold VMs.

4.4.2 Online Learning for Allocated and Harvest VMs

We predict the harvestable storage resource for allocated
VMs, and demanded storage resource for harvest VMs.
Since the predictions for allocated VMs and harvest VMs
are both determined by their workloads, they use the same
learning-based approach but different learning parameters.

We show the entire prediction workflow of BlockFlex in
Figure 13. In each vSSD, we collect the read, write, and erase
operations at the block layer for online predictions, therefore,
we do not rely on the systems software running on top of

TeraSort

ML Prep

PageRank

Alib
aba

50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Storage Bandwidth

TeraSort

ML Prep

PageRank
Google

50
60
70
80
90

100

Storage Capacity

TeraSort

ML Prep

PageRank

Alib
aba

50
60
70
80
90

100

Bandwidth Duration

TeraSort

ML Prep

PageRank
Google

50
60
70
80
90

100

Capacity Duration

None 5% 10% 30%

Figure 14: Prediction accuracy of storage bandwidth, capacity, and duration time available for harvesting, with various
over-provisioning ratios. A slight over-provisioning for storage harvesting can significantly improve the prediction accuracy.

the vSSD. Based on these I/O traces, we infer the bandwidth,
throughput (IOPS), and current storage utilization.

We use Long-Short Term Memory (LSTM) models [29] to
develop our predictors, because of their strength in time-series
predictions and relatively low overhead. The inputs for LSTMs
are statistical measures gathered from the bandwidth, IOPS
(e.g., maxiops, miniops), and storage utilization. By default,
BlockFlex trains the models every three minutes using the
collected statistics from the preceding 15 minutes. This
introduces minimal performance and memory overhead. Both
bandwidth predictor and capacity predictor use the same
LSTM model, but we tune their learning rate and hidden layer
size slightly differently for improved accuracy (see Figure 13).
These predictors will generate the predicted bandwidth (in
channels) and predicted capacity (in GB), respectively.

The predictions of storage bandwidth and capacity are
passed to their respective duration predictors. Each duration
predictor consists of a collection of individual sub-predictors.
Each sub-predictor is responsible for a possible output from
the bandwidth/capacity predictors. For instance, if the output
of the bandwidth predictor ranges from 1 to 16 channels, we
will have 16 duration sub-predictors, each sub-predictor will
predict its corresponding duration time by using the history
of previous durations at that demand.

To ensure a gSSD can satisfy both the storage and bandwidth
requirements from a harvest VM, the duration selector takes
the maximum duration for demanded storage resources. To
ensure a regular VM will not reclaim resources early, the
selector takes the minimum duration for the harvestable
storage resources. The final output delivered by the predictors
in BlockFlex is presented in a tuple of <bandwidth, capacity,
duration>. We describe the details of each predictor as follows.
Storage bandwidth: For the prediction of storage bandwidth,
we use six inputs for the LSTM model: the maximum, minimum,
and average for both bandwidth and IOPS. We do not use other
statistical measures as inputs because they do not improve
the prediction accuracy and slow down the convergence of
the model. As the number of flash channels is proportional
to the storage bandwidth, we use the number of channels as
the bandwidth metric to simplify the bandwidth prediction.
Storage capacity: The prediction model for the storage
capacity is similar to the model used for the storage bandwidth.

We use the maximum, minimum, and average of past storage
utilizations, and the current changes in storage utilization as
the inputs. We find that using the changes in storage utilization
helps differentiate long periods of sequential writes against
shorter changes. We use the number of flash blocks as the
output of the capacity predictor.
Duration: For the duration, we make the predictions for
storage bandwidth and capacity separately. For allocated
VMs, we predict how long their available storage capacity
and bandwidth can be used by harvest VMs; for harvest
VMs, we predict how long a demand of storage capacity and
bandwidth will last before more resources are needed. As
discussed, a set of sub-predictors are used for each demanded
bandwidth/capacity. BlockFlex updates and maintains the
history of durations for model training and inference.

4.4.3 Resource Provisioning for Improved Accuracy

We examine the accuracy of the LSTM models we develop for
the aforementioned predictors using various cloud workloads
(see their descriptions in Table 2). A prediction for storage
bandwidth and capacity is considered accurate if the predictor
predicts at least as much as the actually demanded/available
storage. A prediction of duration time is considered accurate
if the predicted storage bandwidth and capacity lasts as long
as the actual demand/availability. We track the actual storage
demand/availability and predicted storage demand/availability
to calculate the prediction accuracies.

As shown in Figure 14, the average accuracies of predicting
storage bandwidth, capacity, and their durations are 89%, 93%,
79%, and 79% on average. Their accuracy varies for different
workloads. To further improve the prediction accuracy and
avoid resource preemptions (see §4.5), we use a simple yet
effective approach – over-provisioning more storage resources
based on the predictions of demanded storage resources, and
under-provisioning storage resources based on the predictions
of harvestable storage resources. We vary the provisioning ratio
from 5% to 30%, and show the updated accuracies in Figure 14.
We find the accuracies of all the predictions can reach 93–96%
with a provisioning ratio of 5%. As we increase the provision-
ing ratio, we do not see much accuracy improvement. There-
fore, we use the 5% provisioning ratio in BlockFlex by default.

Table 1: Exception handling for different scenarios.

ID Harvestable
Storage

Demanded
Storage

Possible Exceptions

1 Over-predict Over-predict Waste or Early Reclamation or N/A
2 Over-predict Under-predict Under-Harvest or Early Reclamation
3 Under-predict Over-predict Waste
4 Under-predict Under-predict Under-Harvest or Waste or N/A

4.5 Exception Handling in Storage Harvesting
Although the predictors in BlockFlex deliver high accuracy
as discussed in §4.4, mispredictions can still happen, causing
exceptions during storage harvesting. Typical exceptions
include the resource preemption in which a regular VM
prematurely reclaims the harvested storage from a harvest VM,
and under-harvesting in which a harvest VM must request ad-
ditional storage resources to satisfy the request of more storage
resource than the predicted demand. VM terminations and data
loss could happen if these exceptions are not handled properly.
Misprediction types. Mispredictions can be categorized into
two types: over-prediction and under-prediction. As we make
predictions for both harvestable storage (in the regular VMs)
and demanded storage (in the harvest VMs), the two mispre-
diction categories apply to both sides, as shown in Table 1.

An over-prediction of demanded storage means that a har-
vest VM harvests more storage resources than it really needs;
an under-prediction of demanded storage means that a harvest
VM harvests less storage resources than it really needs. In
contrast, an over-prediction of harvestable storage means that
a regular VM has less harvestable storage resources than pre-
dicted; an under-prediction of harvestable storage means that
a regular VM has more harvestable storage resources than pre-
dicted. During storage harvesting, any misprediction or combi-
nations of mispredictions could cause an exception. BlockFlex
employs different exception handling for each scenario.
Exception handling. As shown in Table 11, mispredictions
could mainly cause three exceptions: waste of storage
resources, early resource reclamation, and under-harvesting.
Waste of storage resources. BlockFlex could waste storage
resources when mispredictions leave them unused. In the case
1 of Table 1, a regular VM provides the storage resource
requested from the harvest VM, although the harvest VM
may over-predict its demanded storage resource. In case 3 ,
the waste of storage resources becomes worse, because the
regular VM actually has more harvestable storage resources
than the requested resources from the harvest VM. As we
trade the over-provisioning of demanded storage in the harvest
VMs for increased prediction accuracy, it is inevitable to cause
some waste of storage resources. However, since BlockFlex
uses a 5% over-provisioning ratio (see §4.4) in its predictors,
the waste is minimal. Compared to the cloud platforms
without storage harvesting, BlockFlex still improves the
storage utilization. Therefore, BlockFlex does perform special

1If the demanded storage resource from a harvest VM exactly matches with
the harvestable storage resource in a regular VM, there is no exception (N/A).

exception handling for this exception.
Early resource reclamation. This could happen when a
regular VM has less harvestable storage resources than the
demanded storage resources from a harvest VM. Typical
examples include the case 1 and 2 in Table 1, in which we
over-predict the harvestable storage resource in a regular VM,
but in reality, the regular VM has less harvestable storage than
the demanded storage from a harvest VM. In both cases, the
regular VM has to reclaim its storage from the harvest VM.
To handle this exception, BlockFlex will identify a new gSSD
that meets the requirements for storage capacity, bandwidth,
and duration. After that, BlockFlex will copy all the data
from the old gSSD to the new gSSD and update the address
mapping table in the vSSD of the corresponding harvest
VM. BlockFlex will migrate data between gSSDs at block
granularity to minimize the impact on the running applications.
BlockFlex will reclaim the old gSSD while ensuring its flash
blocks are erased before being used by the regular vSSD (see
§4.3.2). However, if there is no satisfactory gSSD available,
an exception will be reported to the end users of the harvest
VM (like what is done today for spot VMs [63]).
Under-harvesting. The exception of under-harvesting could
happen when a harvest VM under-predicts its demanded
storage resources (i.e., it requests less storage resources than
it really needs). Typical examples include the cases 2 and
4 . For the case 2 , under-harvesting could happen when the
harvest VM under-predicts its demanded storage resources.
For the case 4 , although the regular VM under-predicts its
harvestable storage resources, the demanded storage in reality
could still be more than the available storage resources in
the regular VM. To handle this exception, BlockFlex will
harvest new gSSDs for the harvest VM until meeting the
demand. As discussed in Figure 12, BlockFlex enables the
use of multiple gSSDs in a single vSSD. However, if there
is no gSSD available, BlockFlex will report an exception to
the users of the harvest VM, resulting in a termination of the
harvest VM or a delay of job executions in the harvest VM.

Note that mispredictions could happen along all three
dimensions (i.e., storage capacity, bandwidth, and time
available for harvesting) of the storage resource. The described
exception handling is used in BlockFlex for mispredictions
along any of the three dimensions.

4.6 Implementation Details

We implement the gSSD abstraction of BlockFlex using a
programmable SSD with 1TB capacity. The SSD has 16
channels, each channel has 4 dies, each die has 4 planes, each
plane has 1024 blocks. Each block consists 256 pages, each
16KB. Its controller allows read/write/erase operations against
the raw flash resources and enables the host to develop their
own FTL for address translation, GC, and wear leveling.

The gSSD implementation takes 4.1K lines of code (LoC)
using C programming language. The vSSD used in this paper

Table 2: Workloads used in our evaluation.

Workload Description
TeraSort [26] Sort data generated by TeraGen.
ML Prep [2] Preprocess images for machine learning tasks.

PageRank [25] Compute the pagerank of a graph.
YCSB [73] Transaction processing on a database.

0 20 40 60 80 100
Percentage of VMs (%)

0

20

40

60

80

100

St
or

ag
e

C
ap

ac
ity

 U

til
iz

at
io

n
(%

)

Baseline (Avg)
Baseline (Max)
Blockflex (Avg)
Blockflex (Max)

Figure 15: Improved utilization for underutilized storage.

is similar to the virtualized SSDs in our prior work [30]. Block-
Flex creates different vSSDs for harvest VMs and regular VMs.
It allocates physical flash channels for each vSSD to ensure
performance isolation. Upon workload execution, BlockFlex
handles the logical block I/O requests received by the vSSDs
with actual read and write operations to the allocated physical
flash blocks. We run BlockFlex on a real server with 8 Intel(R)
Xeon(R) CPU E3-1240 v5 cores running at 3.5 GHz.

BlockFlex’s predictors are implemented using PyTorch
v1.9.0 [53] in 2.8K LoC using Python. Each model is im-
plemented with one hidden LSTM layer fully connected with
the input and output layers. The bandwidth and space predic-
tors have an additional softmax layer applied to the output.
All models use adam [37] as an optimizer and mean squared
error as a loss function. We vary the learning rate and sizes of
the hidden layer. Bandwidth prediction uses a learning rate of
0.005 and 16 hidden nodes. Capacity prediction uses a learning
rate of 0.04 and 4 hidden nodes. Bandwidth duration uses a
learning rate of 0.006 and 50 hidden nodes. Capacity duration
uses a learning rate of 0.001 and 50 hidden nodes.

5 Evaluation

Our evaluation demonstrates that: (1) BlockFlex improves the
storage utilization in cloud platforms by leveraging both under-
utilized and unallocated storage resources (§5.2); (2) Block-
Flex improves the performance of harvest VMs while minimiz-
ing the impact on regular VMs (§5.3 and §5.4); (3) BlockFlex
introduces negligible overhead to storage management (§5.5);

5.1 Experimental Setup
We evaluate BlockFlex with a set of synthetic workloads and
real-world applications as shown in Table 2. We use Hadoop’s
TeraSort [26], ML Prep [2], and the PageRank implementation
in GraphChi [25] to represent common applications in harvest
VMs, while YCSB [73] represents common regular VM work-
loads. For TeraSort, we generate and sort 75GB datasets with

0 20 40 60 80 100
Percentage of VMs (%)

0

20

40

60

80

100

St
or

ag
e

B
an

dw
id

th

 U
til

iz
at

io
n

(%
) Blockflex (Avg)

Blockflex (Max)
Baseline (Avg)
Baseline (Max)

Figure 16: Improved utilization for underutilized bandwidth.

0 20 40 60 80 100
Percentage of Servers (%)

0

20

40

60

80

100

St
or

ag
e

C
ap

ac
ity

 U

til
iz

at
io

n
(%

)

Blockflex (Avg)
Baseline (Avg)

Figure 17: Improved utilization for unallocated resources.

the TeraGen in Hadoop [26]. For PageRank, we use the Friend-
ster graph (61GB) [72]. For ML Prep, we process images from
the ImageNet data set (220 GB) [18]. For YCSB, we populate
a key-value store RocksDB [55] with 180GB of data and run
workloads A-E. In the evaluation, we report the numbers for
YCSB-A since the workloads B-E deliver similar results.

5.2 Improved Storage Utilization
To evaluate the improved utilization of BlockFlex, we gather
requests from 60,000 low priority VMs from Google traces
to characterize the demand of harvest VMs. Their storage
requests vary between 32GB and 512GB, and last between
30 minutes and 8.5 days (2.1 days on average). The demanded
bandwidth is proportional to the demanded storage. We match
these storage demands with harvestable storage capacity from
4,000 regular VMs. When evaluating the benefits of utilizing
unallocated storage, we match them with unallocated VMs of
1,400 servers. Since VMs with low storage utilization present a
greater opportunity for harvesting, we highlight the capability
of utilizing the heavily underutilized storage with BlockFlex.
Underutilized Capacity. We first analyze the impact on the
underutilized storage capacity, summarized in Figure 15. We
compare the average and maximum utilization when using
BlockFlex against the baseline utilization for VMs without
harvesting (originally shown in Figure 2). We see an average
improvement of 1.25× (43% vs. 54% utilization) across all
VMs and an improvement of 1.75× (20% vs. 35%) for those
that had less than 60% storage utilization. This shows the
benefits BlockFlex can obtain, especially when harvesting
flash blocks from VMs with low storage utilization.

Next, we see that the maximum utilization across all of the
VMs is increased by 1.37× (49% vs. 67%). We also observe
that the over-provisioning we add to the predictions ensures
that we do not fully utilize any regular VM. This reinforces

0 30 60 90 120
Time (minutes)

200

400

600

B
an

dw
id

th
 (M

B
/s

) Unsold
Sold

Static

(a) TeraSort

0 30 60 90 120
Time (minutes)

200

400

600

B
an

dw
id

th
 (M

B
/s

) Unsold
Sold

Static

(b) ML Prep

0 30 60 90 120
Time (minutes)

200

400

600

B
an

dw
id

th
 (M

B
/s

) Unsold
Sold

Static

(c) PageRank

Figure 18: Performance benefits of storage harvesting for harvest VMs.

that BlockFlex has a low probability of reclamation.
Underutilized Bandwidth. We now analyze the underutilized
storage resource from a bandwidth perspective, summarized
in Figure 16. Our results show a stable improvement of 1.34×
(22% vs. 30%) for all VMs. BlockFlex also increases the
maximum utilization by 1.27× (53% vs. 66%). As with
underutilized storage, we avoid reclamations by not fully
utilizing the bandwidth of regular VMs. This demonstrates
that BlockFlex can improve both the bandwidth and capacity
utilization of cloud storage from underutilized resources.
Unallocated Storage. We analyze the utilization improve-
ment by harvesting unallocated VMs, presented in Figure 17.
We observe that BlockFlex improves the overall utilization
by 1.17× (69% vs. 81%). Servers with utilization below 60%
are improved by 1.42× (45% vs. 64%).

For underutilized and unallocated storage resources, we ob-
serve 1.25× improvement on average, showing that BlockFlex
can significantly use both underutilized and unsold storage
resources to improve utilization. For extremely underutilized
cases (under 60%), we observe 1.48× improvement on aver-
age. This shows that BlockFlex can successfully match the har-
vestable storage resources to the demands from harvest VMs.

5.3 Improved Performance for Harvest VM
We examine how BlockFlex improves the performance of
harvest VMs. The results are shown in Figure 18. We evaluate
three different configurations: Static: the harvest VM is
statically configured with 8 channels and does not harvest.
This represents the current (baseline) storage virtualization.
Sold: a 4-channel gSSD is allocated from channels occupied
by a regular VM that uses 50% of its maximum bandwidth.
Unsold: a 4-channel gSSD is allocated from unallocated
channels. For both unsold and static, the gSSD is harvested
after one hour. Before each experiment, we warm up the SSD
to ensure GC will occur. We run all workloads for two hours.

By harvesting additional channels, the harvest VM has
significantly improved bandwidth. As we compare the Sold
scheme with the Static scheme, the workload performance is
improved by 16–51% on average. For the Unsold scheme, the
lack of interference with the regular VM improves the storage
bandwidth by 22–60%. We observe the best improvement

15 30 45 60
Time (minutes)

50

100

150

200

250

B
an

dw
id

th
 (M

B
/s

) Unsold Static

(a) ML Prep Bandwidth

15 30 45 60
Time (minutes)

100

200

300

400

500
B

an
dw

id
th

 (M
B

/s
) Unsold Static

(b) PageRank Bandwidth

Figure 19: Read bandwidth of ML Prep and PageRank
workloads after storage harvesting.

for PageRank, as its workload spends more time on I/O than
TeraSort or ML Prep workloads. The Unsold scheme provides
an additional 6% bandwidth improvement over the Sold
scheme on average. As we translate this into the end-to-end
execution time, we see an average performance improvement
of 20% using Sold storage, and 25% improved performance
using Unsold storage. This demonstrates the significant
performance benefits BlockFlex can obtain for IO-intensive
applications, when utilizing either sold or unsold storage.

Clearly, additional flash channels can benefit write-heavy
workloads, as we increase the I/O parallelism. It is less clear
whether additional channels can benefit read heavy workloads,
as the harvested channels cannot immediately satisfy reads. To
investigate this, we focus on the read bandwidth improvements
in Figure 19. For both ML Prep and PageRank workloads, we
see an increase of 10−21% after 5 minutes of harvesting. After
the full 60 minutes, the average increase of the read bandwidth
stabilizes and reaches an overall improvement of 22−60%.

Specifically, for ML Prep, we see a slight increase (10%) as

2 4 6 8 10
Channels

0

50

100

150

200

Th
ro

ug
hp

ut
 (K

 o
ps

/s
)

W/O Harvesting
W/ Harvesting

(a) Bandwidth

2 4 6 8 10
Channels

0
50

100
150
200
250

La
te

nc
y

(m
ic

ro
se

cs
)

W/O Harvesting
W/ Harvesting

(b) 95th Percentile Latency

Figure 20: Performance of a regular SSD with storage
harvesting enabled.

we redirect writes to the additional channels immediately upon
harvesting (0-5 minutes). Afterwards, as we start issuing writes
and reads to the new channels, we see the read bandwidth ben-
efit stabilizes at an improved level (24%). As for the PageRank
workload, it shows relatively consistent benefit in the read
bandwidth (60%). This is because PageRank workload is write
intensive, during the first two minutes of harvesting. Thus, the
PageRank data is aggressively written to the new harvested
channels, which benefits the read bandwidth in return.

5.4 Performance Impact on Regular VM

To investigate the impact of storage harvesting on regular VMs,
we examine the interference generated by the harvest VM. We
run the YCSB workload-A with 10 threads in the regular VM,
and vary the number of flash channels in its vSSD from 2 to 10.
The database tables are striped across all the available channels
in the vSSD. We first measure the throughput and tail latency
(95th percentile latency) of the YCSB workload without
enabling storage harvesting. After that, we create a harvest
VM to run the ML Prep workload. The harvest VM will
harvest all the channels of the regular VM, and we measure
the performance of the regular VM after the harvesting.

As shown in Figure 20, the throughput of YCSB Workload-
A decreases slightly, while the latency is almost constant as we
increase the number of channels. The storage harvesting does
not introduce much overhead (5.1% on average), since the reg-
ular VM always has the higher priority for its I/O requests and
available storage bandwidth. We observe a similar overhead for
the tail latency, demonstrating that the storage harvesting has
negligible negative impact on the performance of regular VMs.

We also examine the interference caused by additional
GC and storage reclamations. As indicated in §5.3, GC is
enabled in our experiments. We believe the GC overhead can
be further reduced with erase suspension available in modern
SSDs [36, 70]. We wish to explore this feature in our future
work. As for the overhead caused by storage reclamations, we
observe that reclaiming an entire flash channel results in 1.5%
slowdown in the average bandwidth of regular VMs. Such an
overhead is acceptable in reality, as storage reclamations do
not happen frequently over the entire lifetime of VMs.

Table 3: Learning overheads for each iteration in our predictors

.

Predictor Training Time
(millisecs)

Inference Time
(millisecs)

Model
Size (KB)

Bandwidth 10.3 2.5 22
Space 13.0 0.4 12

Bandwidth Duration 410.0 4.1 1153
Space Duration 42.0 0.3 510

Total 475 7.3 1697

5.5 Overhead Sources in BlockFlex

We now profile the overheads introduced by BlockFlex. We
begin by analyzing the overheads introduced by the predictors.
We present the summary of these overheads in Table 3. First,
we measure the time consumed by training each predictor
for one iteration of online training. As discussed in §4.4, each
model is trained one iteration every three minutes. Since each
duration predictor has multiple models, their training is more
expensive than storage bandwidth and capacity predictors. In
total, training all of the predictors consumes 0.48 seconds on
our multi-core server. In this case, cloud platform operators do
not need powerful hardware accelerators like GPUs to deploy
BlockFlex. Since input sizes and training frequency do not
change by workload, the training overhead is the same across
all the workloads evaluated in this paper.

For each inference, the total execution time is 7.3 millisec-
onds. This overhead is also incurred once every three minutes,
but can be further optimized. For example, we can decrease
the inference frequency when a vSSD has generated a gSSD.

To store the predictors for each vSSD, BlockFlex allocates
about 1.7MB memory space. It also allocates 4KB memory to
store the history of bandwidth/capacity information used for
training each iteration. This demonstrates the minimal perfor-
mance and storage overheads of the predictors in BlockFlex.

We also profile the overheads of gSSD creation and lookup.
They include the overheads of creating a new gSSD and harvest-
ing free blocks from a regular vSSD. Since they only involve
metadata operations, the overhead is 61 µs for creating a gSSD
with 64GB. As gSSDs are created in the background, their cre-
ation overhead is not on the critical path. We organize the gSSD
pool in sorted lists, the gSSD lookup takes 1.2 µs on average.

As we reclaim a gSSD from a harvest VM, its primary
cost is on the erase of all the written blocks. Since we can
parallelize the erase operations across channels, the limiting
factor is the channel with the most allocated blocks. The total
overhead is 17.1, 34.2, and 68.4 seconds for a channel (64GB)
with 25%, 50%, 100% harvested, respectively. According to
our study of various cloud traces, we observe that storage
harvesting is infrequent (once every few hours). Additionally,
compared to the lifetime of VMs in the cloud, the overhead
of storage reclamation is relatively small, which has negligible
impact on the performance of regular VMs.

6 Discussion and Future Work

Security implications of storage harvesting. A few poten-
tial security concerns may arise when sharing physical flash
blocks in a cloud environment. First, we consider whether
data could be leaked via harvested blocks. Since BlockFlex
erases the flash blocks before creating/reclaiming the gSSD, it
guarantees that user data will not be leaked through the storage
harvesting. Second, we consider whether information could be
leaked through the cached data, such as LBA-PBA mappings.
As existing cloud infrastructure prevents access to the SSD
virtualization, device driver, and controller layers without
permission checking, therefore, even though a flash channel
is shared across VMs, their accesses are protected. Third,
we consider whether multiple VMs sharing a physical flash
channel could suffer from side-channel attacks. It is actually
hard for attackers to obtain meaningful information, since
the variations could be caused by many factors, such as the
number of co-located VMs or the CPU/memory contention.
Compatible with compute and memory harvesting. Upon
the creation of harvest VMs, cloud platforms will allocate
essential compute, memory, and storage resources. BlockFlex
mainly targets storage harvesting to improve the overall cloud
storage utilization, and improve the performance of applica-
tions bottlenecked by storage resources. It is compatible with
prior studies on compute and memory harvesting [21, 69] for
improving the whole-system resource utilization.
Semantic-aware storage harvesting. BlockFlex utilizes the
vSSD interface in its implementation, making it transparent
to applications in VMs. However, due to the lack of semantic
information from upper-level applications, BlockFlex has to
rely on the predictors to decide the harvestable and demanded
storage resources. Additionally, preventing data loss is one
of the key challenges when developing BlockFlex, allowing
systems software to manage their data in harvested storage
would be an alternative solution to address this challenge.
Therefore, new APIs can be developed and exposed to popular
software systems such as key-value stores and Hadoop
Distributed File System (HDFS), which offers more flexibility
for applications to manage their data in harvested storage.

7 Related Work

Storage virtualization and efficiency. Storage devices
such as SSDs have been virtualized as system-wide
shared resources for improved utilization in cloud plat-
forms [30,35,44,61,62,75]. Based on this, most recent studies
focused on improving the performance isolation between
collocated applications [7, 33, 34, 43, 50, 65]. However,
our study (see §2) reveals that the cloud storage is still
significantly underutilized. Ouyang et al. [52] identified
the resource underutilization in the SSDs and developed
the software-defined flash for cloud platforms. Similar to
software-defined networking, software-defined flash is be-

coming a backbone technique in datacenters today [17, 57, 65].
However, most of them still use a static-allocation approach,
which inevitably causes the waste of both storage capacity
and bandwidth [12, 52]. Disaggregated storage architectures
are proposed [41, 48, 51, 58, 68]. However, they still suffer
from storage underutilization when we allocate disaggregated
storage to VMs, due to the dynamic workload changes in VMs.
BlockFlex addresses the storage underutilization problem by
enabling storage harvesting in software-defined datacenters.
Resource harvesting in cloud platforms. Harvesting
resources for VMs to improve the resource utilization is not
a new concept in cloud platforms. Similar to the harvest VM,
many studies have been developed recently, such as Spot
VMs and burstable VMs [6, 8, 9, 21, 22, 60, 69]. However, they
typically harvest compute and memory resources at a VM
granularity. BlockFlex is the first work that focuses on storage
harvesting, and addresses the unique challenges in storage
harvesting and exception handling. Beyond harvesting unsold
resources [6], we can also harvest underutilized allocated
storage resources, while providing the performance and
security isolation between regular VMs and harvest VMs.
Learning approaches for resource efficiency. Most recently,
researchers started to leverage learning techniques to
improve the task scheduling [54, 69, 77], cluster resource
management [6, 11, 16, 46, 74], and performance optimiza-
tions [27, 38, 45, 78]. They showed that the learning-based
approach is a promising method to address system optimiza-
tion problems. However, it is still unclear how they can benefit
the cloud storage. In this work, we apply the learning-based
approach to improve the storage utilization within our storage
harvesting framework. We customize the classical LSTM
models for the predictions of harvestable and demanded
storage resources, and show their efficiency in our evaluation.

8 Conclusion

In this paper, we first conduct a characterization study of the
cloud storage utilization, and discloses that the low storage
utilization exists pervasively in modern cloud platforms. To
this end, we develop a learning-based storage harvesting
framework BlockFlex, which can harvest both allocated and
unallocated storage for evictable VMs. Our experiments show
that BlockFlex can significantly improve the cloud storage
utilization, while accelerating the storage performance of
harvest VMs with minimal impact on the regular VMs.

Acknowledgments

We thank the anonymous reviewers and our shepherd Swami
Sundararaman for their helpful comments and feedback. We
thank Íñigo Goiri for providing part of the cloud traces for our
study as well as insightful discussions. This work is supported
by NSF CAREER Award 2144796, CCF-1919044, CNS-
1850317 and a grant from Western Digital Technologies, Inc.

References

[1] Ahmed Abulila, Vikram S Mailthody, Zaid Qureshi, Jian
Huang, Nam Sung Kim, Jinjun Xiong, and Wen-mei Hwu.
FlatFlash: Exploiting the Byte-Accessibility of SSDs within
A Unified Memory-Storage Hierarchy. In Proceedings of the
24th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’19),
Providence, RI, USA, 2019.

[2] Albumentations Image Processing.
https://github.com/albumentations-team/
albumentations, 2021.

[3] Alibaba Cluster Trace. https://github.com/alibaba/
clusterdata/blob/master/cluster-trace-v2018/
trace_2018.md.

[4] Azure Spot VM. https://azure.microsoft.com/en-us/
services/virtual-machines/spot/.

[5] Amazon Elastic Compute Cloud. Amazon EC2 Spot Instances.
https://aws.amazon.com/ec2/spot/.

[6] Pradeep Ambati, Inigo Goiri, Felipe Frujeri, Alper Gun,
Ke Wang, Brian Dolan, Brian Corell, Sekhar Pasupuleti,
Thomas Moscibroda, Sameh Elnikety, Marcus Fontoura, and
Ricardo Bianchini. Providing slos for resource-harvesting
vms in cloud platforms. In Proceedings of the 14th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI’20), November 2020.

[7] Sebastian Angel, Hitesh Ballani, Thomas Karagiannis, Greg
O’Shea, and Eno Thereska. End-to-end performance isolation
through virtual datacenters. In Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI’14), Broomfield, CO, October 2014.

[8] Amazon AWS. Burstable performance instances. https:
//docs.aws.amazon.com/AWSEC2/latest/UserGuide/
burstable-performance-instances.html, 2020.

[9] Microsoft Azure. Introducing B-Series, our new burstable
VM size. https://azure.microsoft.com/en-us/blog/
introducing-b-series-our-new-burstable-vm-size/,
2017.

[10] Azure cloud trace. https://github.com/Azure/
AzurePublicDataset, 2019.

[11] Ricardo Bianchini, Marcus Fontoura, Eli Cortez, Anand Bonde,
Alexandre Muzio, Ana-Maria Constantin, Thomas Moscibroda,
Gabriel Magalhaes, Girish Bablani, and Mark Russinovich.
Toward ml-centric cloud platforms. Communication of ACM,
63(2), January 2020.

[12] Matias Bjørling, Javier Gonzalez, and Philippe Bonnet.
Lightnvm: The linux open-channel SSD subsystem. In Pro-
ceedings of the 15th USENIX Conference on File and Storage
Technologies (FAST’17), Santa Clara, CA, February 2017.

[13] Amazon Elastic Compute Cloud, Burstable Performance
Instances.
https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/burstable-performance-instances.html,
2020.

[14] Microsoft Azure Cloud. Configure online vir-
tual hard disk resize. https://docs.microsoft.
com/en-us/previous-versions/windows/it-pro/
windows-server-2012-r2-and-2012/dn282284(v=ws.
11), 2016.

[15] Cloud flash storage: SSD options from AWS, Azure, and GCP.
https://www.computerweekly.com/feature/
Cloud-flash-storage-SSD-options-from\
-AWS-Azure-and-GCP, 2020.

[16] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich,
Marcus Fontoura, and Ricardo Bianchini. Resource central:
Understanding and predicting workloads for improved resource
management in large cloud platforms. In Proceedings of the
26th Symposium on Operating Systems Principles (SOSP’17),
Shanghai, China, 2017.

[17] Project denali to define flexible ssds for cloud-scale applica-
tions.
https://azure.microsoft.com/en-us/blog/
project-denali-to-define-flexible\
-ssds-for-cloud-scale-applications/.

[18] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and
Li Fei-Fei. Imagenet: A large-scale hierarchical image database.
In Proceedings of the 2009 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR’09), 2009.

[19] Andreas E Dilger. Online ext2 and ext3 filesystem resizing. In
Ottawa Linux Symposium, page 117, 2002.

[20] Ev3 and Esv3-Series.
https://docs.microsoft.com/en-us/azure/
virtual-machines/ev3-esv3-series, 2021.

[21] Alexander Fuerst, Stanko Novaković, Íñigo Goiri, Gohar Irfan
Chaudhry, Prateek Sharma, Kapil Arya, Kevin Broas, Eugene
Bak, Mehmet Iyigun, and Ricardo Bianchini. Memory-
harvesting vms in cloud platforms. In Proceedings of the 27th
ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’22),
Lausanne, Switzerland, February 2022.

[22] Google. Our data centers now work harder
when the sun shines and wind blows. https:
//blog.google/inside-google/infrastructure/
data-centers-work-harder-sun-shines-wind-blows,
2020.

[23] Google Cluster Trace. https://github.com/google/
cluster-data/blob/master/ClusterData2011_2.md.

[24] Google Cloud. Preemptible VM Instances. https://cloud.
google.com/compute/docs/instances/preemptible.

[25] Graphchi.
https://github.com/GraphChi/graphchi-cpp, 2021.

[26] Hadoop TeraSort.
https://hadoop.apache.org/docs/r3.2.0/api/org/
apache/hadoop/examples/terasort/package-summary.
html, 2021.

[27] Mingzhe Hao, Levent Toksoz, Nanqinqin Li, Edward Edberg
Halim, Henry Hoffmann, and Haryadi S. Gunawi. LinnOS:
Predictability on Unpredictable Flash Storage with a Light
Neural Network. In Proceedings of the 14th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI’20), November 2020.

https://github.com/albumentations-team/albumentations
https://github.com/albumentations-team/albumentations
https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace_2018.md
https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace_2018.md
https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace_2018.md
https://azure.microsoft.com/en-us/services/virtual-machines/spot/
https://azure.microsoft.com/en-us/services/virtual-machines/spot/
https://aws.amazon.com/ec2/spot/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://azure.microsoft.com/en-us/blog/introducing-b-series-our-new-burstable-vm-size/
https://azure.microsoft.com/en-us/blog/introducing-b-series-our-new-burstable-vm-size/
https://github.com/Azure/AzurePublicDataset
https://github.com/Azure/AzurePublicDataset
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn282284(v=ws.11)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn282284(v=ws.11)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn282284(v=ws.11)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/dn282284(v=ws.11)
https://www.computerweekly.com/feature/Cloud-flash-storage-SSD-options-from\-AWS-Azure-and-GCP
https://www.computerweekly.com/feature/Cloud-flash-storage-SSD-options-from\-AWS-Azure-and-GCP
https://www.computerweekly.com/feature/Cloud-flash-storage-SSD-options-from\-AWS-Azure-and-GCP
https://azure.microsoft.com/en-us/blog/project-denali-to-define-flexible\-ssds-for-cloud-scale-applications/
https://azure.microsoft.com/en-us/blog/project-denali-to-define-flexible\-ssds-for-cloud-scale-applications/
https://azure.microsoft.com/en-us/blog/project-denali-to-define-flexible\-ssds-for-cloud-scale-applications/
https://docs.microsoft.com/en-us/azure/virtual-machines/ev3-esv3-series
https://docs.microsoft.com/en-us/azure/virtual-machines/ev3-esv3-series
https://blog.google/inside-google/infrastructure/data-centers-work-harder-sun-shines-wind-blows
https://blog.google/inside-google/infrastructure/data-centers-work-harder-sun-shines-wind-blows
https://blog.google/inside-google/infrastructure/data-centers-work-harder-sun-shines-wind-blows
https://github.com/google/cluster-data/blob/master/ClusterData2011_2.md
https://github.com/google/cluster-data/blob/master/ClusterData2011_2.md
https://cloud.google.com/compute/docs/instances/preemptible
https://cloud.google.com/compute/docs/instances/preemptible
https://github.com/GraphChi/graphchi-cpp
https://hadoop.apache.org/docs/r3.2.0/api/org/apache/hadoop/examples/terasort/package-summary.html
https://hadoop.apache.org/docs/r3.2.0/api/org/apache/hadoop/examples/terasort/package-summary.html
https://hadoop.apache.org/docs/r3.2.0/api/org/apache/hadoop/examples/terasort/package-summary.html

[28] Timothy Harris. A pragmatic implementation of non-blocking
linked-lists. In Proceedings of the 15th International Sympo-
sium on Distributed Computing (DISC 2001), Lisbon, Portugal,
2001.

[29] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[30] Jian Huang, Anirudh Badam, Laura Caulfield, Suman Nath,
Sudipta Sengupta, Bikash Sharma, and Moinuddin K. Qureshi.
Flashblox: Achieving both performance isolation and uniform
lifetime for virtualized ssds. In Proceedings of the 15th USENIX
Conference on File and Storage Technologies (FAST’17), Santa
Clara, CA, February 2017.

[31] Jian Huang, Anirudh Badam, Moinuddin K. Qureshi, and
Karsten Schwan. Unified Address Translation for Memory-
Mapped SSD with FlashMap. In Proceedings of the 42nd
International Symposium on Computer Architecture (ISCA’15),
Portland, OR, June 2015.

[32] IBM. Ibm flash storage and software defined storage. White
Paper, 2017.

[33] Giorgos Kappes and Stergios V. Anastasiadis. Libservices:
Dynamic storage provisioning for multitenant i/o isolation. In
Proceedings of the 11th ACM SIGOPS Asia-Pacific Workshop
on Systems (APSys’20), Tsukuba, Japan, 2020.

[34] Giorgos Kappes and Stergios V. Anastasiadis. A user-level
toolkit for storage i/o isolation on multitenant hosts. In
Proceedings of the 11th ACM Symposium on Cloud Computing
(SoCC’20), Virtual Event, USA, 2020.

[35] Jaeho Kim, Donghee Lee, and Sam H. Noh. Towards SLO
Complying SSDs Through OPS Isolation. In Proc. FAST’15,
Santa Clara, CA, February 2015.

[36] Shine Kim, Jonghyun Bae, Hakbeom Jang, Wenjing Jin,
Jeonghun Gong, Seungyeon Lee, Tae Jun Ham, and Jae W. Lee.
Practical erase suspension for modern low-latency SSDs. In
Proceedings of the 2019 USENIX Annual Technical Conference
(ATC’19), Renton, WA, July 2019.

[37] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

[38] Daniar H. Kurniawan, Levent Toksoz, Anirudh Badam, Tim
Emami, Sandeep Madireddy, Robert B. Ross, Henry Hoffmann,
and Haryadi S. Gunawi. Ionet: Towards an open machine
learning training ground for i/o performance prediction.
Technical Report, 2021.

[39] Dongup Kwon, Junehyuk Boo, Dongryeong Kim, and Jangwoo
Kim. FVM: Fpga-assisted virtual device emulation for fast,
scalable, and flexible storage virtualization. In Proceedings
of the 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI’20), November 2020.

[40] Sungjin Lee, Ming Liu, Sangwoo Jun, Shuotao Xu, Jihong Kim,
and Arvind. Application-managed flash. In Proceedings of the
14th USENIX Conference on File and Storage Technologies
(FAST’16), Santa Clara, CA, February 2016.

[41] Sergey Legtchenko, Hugh Williams, Kaveh Razavi, Austin
Donnelly, Richard Black, Andrew Douglas, Nathanael
Cheriere, Daniel Fryer, Kai Mast, Angela Demke Brown, Ana
Klimovic, Andy Slowey, and Antony Rowstron. Understanding
Rack-Scale disaggregated storage. In Proceedings of the 9th
USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage’17), Santa Clara, CA, July 2017.

[42] Jacob Leverich and Christos Kozyrakis. Reconciling high
server utilization and sub-millisecond quality-of-service. In
Proceedings of the Ninth European Conference on Computer
Systems (EuroSys’14), Amsterdam, The Netherlands, 2014.

[43] Ning Li, Hong Jiang, Dan Feng, and Zhan Shi. PSLO:
Enforcing the Xth Percentile Latency and Throughput SLOs
for Consolidated VM Storage. In Proceedings of the Eleventh
European Conference on Computer Systems (EuroSys’16),
London, United Kingdom, April 2016.

[44] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy
Ranganathan, and Christos Kozyrakis. Heracles: Improving
Resource Efficiency at Scale. In Proceedings of the 42nd
Annual International Symposium on Computer Architecture
(ISCA’15), Portland, OR, June 2015.

[45] Martin Maas, David G. Andersen, Michael Isard, Moham-
mad Mahdi Javanmard, Kathryn S. McKinley, and Colin Raffel.
Learning-based memory allocation for c++ server workloads.
In Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’20), Lausanne, Switzerland, 2020.

[46] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakr-
ishnan, Zili Meng, and Mohammad Alizadeh. Learning
scheduling algorithms for data processing clusters. In
Proceedings of the ACM Special Interest Group on Data
Communication (SIGCOMM’19), Beijing, China, 2019.

[47] Aleksander Maricq, Dmitry Duplyakin, Ivo Jimenez, Carlos
Maltzahn, Ryan Stutsman, and Robert Ricci. Taming per-
formance variability. In Proceedings of the 13th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI’18), Carlsbad, CA, October 2018. USENIX Association.

[48] Jaehong Min, Ming Liu, Tapan Chugh, Chenxingyu Zhao, An-
drew Wei, In Hwan Doh, and Arvind Krishnamurthy. Gimbal:
Enabling multi-tenant storage disaggregation on smartnic jbofs.
In Proceedings of the 2021 Annual Conference of the ACM
Special Interest Group on Data Communication on the Applica-
tions, Technologies, Architectures, and Protocols for Computer
Communication (SIGCOMM’21), Virtual Event, USA, 2021.

[49] Pulkit A. Misra, Inigo Goiri, Jason Kace, and Ricardo Bian-
chini. Scaling distributed file systems in resource-harvesting
datacenters. In Proceedings of the 2017 USENIX Annual
Technical Conference (ATC’17), Santa Clara, CA, July 2017.

[50] Dushyanth Narayanan, Eno Thereska, Austin Donelly, Sameh
Elnikety, and Antony Rowstron. Migrating server storage
to ssds, analysis of tradeoffs. In Proceedings of the Fourth
European Conference on Computer Systems (EuroSys’09),
Nuremberg, Germany, March 2009.

[51] Nutanix Distributed Storage.
https://www.nutanix.com/products/acropolis/
distributed-storage, 2022.

[52] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou, Yong
Wang, and Yuanzheng Wang. Sdf: Software-defined flash
for web-scale internet storage systems. In Proceedings of the
19th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’14),
Salt Lake City, UT, 2014.

https://www.nutanix.com/products/acropolis/distributed-storage
https://www.nutanix.com/products/acropolis/distributed-storage

[53] PyTorch.
https://pytorch.org/, 2021.

[54] Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbigniew T.
Kalbarczyk, and Ravishankar K. Iyer. FIRM: An intelligent
fine-grained resource management framework for slo-oriented
microservices. In Proceedings of the 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI’20),
November 2020.

[55] RocksDB.
https://github.com/facebook/rocksdb, 2021.

[56] Software-defined data center.
https://en.wikipedia.org/wiki/Software-defined_
data_center.

[57] Software-defined storage.
https://en.wikipedia.org/wiki/Software-defined_
storage.

[58] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang.
LegoOS: A disseminated, distributed OS for hardware resource
disaggregation. In Proceedings of the 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI’18),
Carlsbad, CA, October 2018.

[59] Prateek Sharma, Ahmed Ali-Eldin, and Prashant Shenoy.
Resource deflation: A new approach for transient resource recla-
mation. In Proceedings of the Fourteenth European Conference
on Computer Systems (EuroSys’19), Dresden, Germany, 2019.

[60] Prateek Sharma, Stephen Lee, Tian Guo, David Irwin, and
Prashant Shenoy. Spotcheck: Designing a derivative iaas cloud
on the spot market. In Proceedings of the 10th European
Conference on Computer Systems (EuroSys’15), 2015.

[61] David Shue, Michael J. Freedman, and Anees Shaikh. Perfor-
mance isolation and fairness for multi-tenant cloud storage.
In Proceedings of the 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’12), Hollywood,
CA, October 2012.

[62] Dharma Shukla, Shireesh Thota, Karthik Raman, Mad-
han Gajendran, Ankur Shah, Sergii Ziuzin, Krishnam Sun-
dama, Miguel Gonzalez Guajardo, Anna Wawrzyniak, Samer
Boshra, Renato Ferreira, Mohamed Nassar, Michael Koltachev,
Ji Huang, Sudipta Sengupta, Justin Levandoski, and David
Lomet. Schema-agnostic indexing with azure documentdb. In
Proceedings of the 41st International Conference on Very Large
Databases (VLDB’15), Kohala Coast, Hawaii, September 2015.

[63] Error Messages for Azure Spot Virtual Machines and Scale
Sets. https://docs.microsoft.com/en-us/azure/
virtual-machines/error-codes-spot.

[64] Software-Enabled Flash for Hyperscale Data Centers.
https://searchstorage.techtarget.com/post/
Software-Enabled-Flash-for-Hyperscale\
-Data-Centers, 2021.

[65] Eno Thereska, Hitesh Ballani, Greg O’Shea, Thomas Kara-
giannis, Antony Rowstron, Tom Talpey, Richard Black, and
Timothy Zhu. Ioflow: A software-defined storage architecture.
In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles (SOSP’13), 2013.

[66] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David
Oppenheimer, Eric Tune, and John Wilkes. Large-scale cluster
management at google with borg. In Proceedings of the Tenth
European Conference on Computer Systems (EuroSys’15),
Bordeaux, France, 2015.

[67] VMware. Growing, thinning, and shrinking virtual disks in esxi.
https://kb.vmware.com/s/article/1002019, 2021.

[68] VMWare VSAN.
https://www.vmware.com/products/vsan.html, 2022.

[69] Yawen Wang, Kapil Arya, Marios Kogias, Manohar Vanga,
Aditya Bhandari, Neeraja J. Yadwadkar, Siddhartha Sen,
Sameh Elnikety, Christos Kozyrakis, and Ricardo Bianchini.
Smartharvest: Harvesting idle cpus safely and efficiently in the
cloud. In Proceedings of the Sixteenth European Conference
on Computer Systems (EuroSys’21), 2021.

[70] Guanying Wu and Xubin He. Reducing SSD read latency via
NAND flash program and erase suspension. In Proceedings of
the 10th USENIX Conference on File and Storage Technologies
(FAST’12), San Jose, CA, February 2012.

[71] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang.
Bubble-flux: Precise online qos management for increased
utilization in warehouse scale computers. In Proceedings
of the 40th Annual International Symposium on Computer
Architecture (ISCA’13), Tel-Aviv, Israel, 2013.

[72] Jaewon Yang and Jure Leskovec. Defining and evaluating
network communities based on ground-truth. arXiv preprint
arXiv:1205.6233, 2012.

[73] Yahoo! Cloud Serving Benchmark.
https://github.com/brianfrankcooper/YCSB/wiki,
2021.

[74] Di Zhang, Dong Dai, Youbiao He, Forrest Sheng Bao, and
Bing Xie. RLScheduler: An Automated HPC Batch Job
Scheduler Using Reinforcement Learning. In Proceedings of
the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC’20), Virtual Event,
November 2020.

[75] Ning Zhang, Junichi Tatemura, Jignesh M. Patel, and Hakan
Hacigumus. Re-evaluating Designs for Multi-Tenant OLTP
Workloads on SSD-based I/O Subsystems. In Proceedings of
the SIGMOD’14, Snowbird, UT, June 2014.

[76] Yunqi Zhang, George Prekas, Giovanni Matteo Fumarola,
Marcus Fontoura, Inigo Goiri, and Ricardo Bianchini. History-
based harvesting of spare cycles and storage in large-scale
datacenters. In Proceedings of the 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16),
Savannah, GA, November 2016.

[77] Zhiheng Zhong, Minxian Xu, Maria Alejandra Rodriguez,
Chengzhong Xu,and Rajkumar Buyya. Machine learning-based
orchestration of containers: A taxonomy and future directions.
Computing Research Repository (CoRR), abs/2106.12739,
2021.

[78] Giulio Zhou and Martin Maas. Learning on distributed traces
for data center storage systems. In Proceedings of the Machine
Learning and Systems (MLSys’21), Austin, TX, March 2021.

https://pytorch.org/
https://github.com/facebook/rocksdb
https://en.wikipedia.org/wiki/Software-defined_data_center
https://en.wikipedia.org/wiki/Software-defined_data_center
https://en.wikipedia.org/wiki/Software-defined_storage
https://en.wikipedia.org/wiki/Software-defined_storage
https://docs.microsoft.com/en-us/azure/virtual-machines/error-codes-spot
https://docs.microsoft.com/en-us/azure/virtual-machines/error-codes-spot
https://searchstorage.techtarget.com/post/Software-Enabled-Flash-for-Hyperscale\-Data-Centers
https://searchstorage.techtarget.com/post/Software-Enabled-Flash-for-Hyperscale\-Data-Centers
https://searchstorage.techtarget.com/post/Software-Enabled-Flash-for-Hyperscale\-Data-Centers
https://kb.vmware.com/s/article/1002019
https://www.vmware.com/products/vsan.html
https://github.com/brianfrankcooper/YCSB/wiki

	Introduction
	Characterization for Storage Harvesting
	Cloud Storage Utilization
	Opportunities for Storage Harvesting

	Technical Background
	Storage Virtualization and SDF
	Harvest Virtual Machine

	Design and Implementation
	Design Goals and Challenges
	System Overview
	New Abstraction for Storage Harvesting
	Definition of Ghost vSSD
	Management of Ghost vSSDs

	Predictions for Storage Harvesting
	Heuristic-based Prediction for Unsold VMs
	Online Learning for Allocated and Harvest VMs
	Resource Provisioning for Improved Accuracy

	Exception Handling in Storage Harvesting
	Implementation Details

	Evaluation
	Experimental Setup
	Improved Storage Utilization
	Improved Performance for Harvest VM
	Performance Impact on Regular VM
	Overhead Sources in BlockFlex

	Discussion and Future Work
	Related Work
	Conclusion

