
G10: Enabling An Efficient Unified GPU Memory and Storage
Architecture with Smart Tensor Migrations

Haoyang Zhang∗
zhang402@illinois.edu

UIUC

Yirui Eric Zhou∗
yiruiz2@illinois.edu

UIUC

Yuqi Xue
yuqixue2@illinois.edu

UIUC

Yiqi Liu
yiqiliu2@illinois.edu

UIUC

Jian Huang
jianh@illinois.edu

UIUC

ABSTRACT
To break the GPUmemory wall for scaling deep learning workloads,
a variety of architecture and system techniques have been proposed
recently. Their typical approaches include memory extension with
flash memory and direct storage access. However, these techniques
still suffer from suboptimal performance and introduce complexity
to the GPU memory management, making them hard to meet the
scalability requirement of deep learning workloads today.

In this paper, we present a unified GPU memory and storage
architecture named G10 driven by the fact that the tensor behaviors
of deep learning workloads are highly predictable. G10 integrates
the host memory, GPU memory, and flash memory into a unified
memory space, to scale the GPU memory capacity while enabling
transparent data migrations. Based on this unified GPU memory
and storage architecture, G10 utilizes compiler techniques to char-
acterize the tensor behaviors in deep learning workloads. Therefore,
it can schedule data migrations in advance by considering the avail-
able bandwidth of flash memory and host memory. The cooperative
mechanism between deep learning compilers and the unified mem-
ory architecture enables G10 to hide data transfer overheads in a
transparent manner. We implement G10 based on an open-source
GPU simulator. Our experiments demonstrate that G10 outperforms
state-of-the-art GPU memory solutions by up to 1.75×, without
code modifications to deep learning workloads. With the smart data
migration mechanism, G10 can reach 90.3% of the performance of
the ideal case assuming unlimited GPU memory.

CCS CONCEPTS
• Computer systems organization→ Processors and mem-
ory architectures; Secondary storage organization; Neural
networks; • Hardware→ External storage.

∗Co-primary authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0329-4/23/10. . . $15.00
https://doi.org/10.1145/3613424.3614309

KEYWORDS
GPUDirect Storage, Unified Virtual Memory, GPU Memory, Solid
State Drives, Deep Learning Compiler

ACM Reference Format:
Haoyang Zhang, Yirui Eric Zhou, Yuqi Xue, Yiqi Liu, and Jian Huang. 2023.
G10: Enabling An Efficient Unified GPU Memory and Storage Architec-
ture with Smart Tensor Migrations. In 56th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO ’23), October 28–November 01,
2023, Toronto, ON, Canada. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3613424.3614309

1 INTRODUCTION
As we utilize GPUs for scaling deep learning workloads with large-
scale data sets, we are facing the well-known memory wall [38, 47,
67]. Although GPUs provide increasing parallelism, their on-board
memory capacity is still limited, due to the space and power con-
straints, as well as DRAM scaling issues [30, 32, 38, 39]. Meanwhile,
the deep neural network (DNN) models, which have become the
killer applications of GPUs, are demanding a growing amount of
memory for training efficiency and scalability [13, 16, 23, 26, 58–
60, 65, 66]. This gap will only be enlarged if not addressed properly.

To overcome the GPU memory wall, a promising and practical
approach is to expand the limited GPU memory with flash memory,
which provides larger memory capacity at a low cost [49, 67]. With
this approach, a few architecture solutions have been developed in
both academic [67, 68] and industry [61]. For example, ZnG directly
replaces the GPU on-board DRAMwith low-latency flash chips [67],
and AMD SSG integrates flash-based solid-state drives (SSDs) into
the GPU board [61]. Unfortunately, the limited bandwidth of flash
chips is still the performance bottleneck, in comparison with the
high-bandwidth memory in GPUs [44]. An alternative approach is
to use off-board flash-based SSD to back the GPU on-board memory,
forming a heterogeneous memory and storage system. For example,
GPU vendors have been connecting GPUs with SSDs via PCIe links
to bypass the host CPU, and allowing direct data transfer between
the SSD and GPU [19, 21, 61].

However, these existing solutions still suffer from suboptimal
performance. Although we can scale up the SSD bandwidth by
stacking multiple SSDs or flash chips, the aggregated bandwidth is
still limited by the PCIe interface. Even thoughwe can employ faster
interconnects such as NVLink [42], the data transfer bandwidth is
still much lower than the GPU on-board memory bandwidth. To
tolerate slow flash accesses, developers have to carefully manage

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3613424.3614309
https://doi.org/10.1145/3613424.3614309
https://doi.org/10.1145/3613424.3614309

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Haoyang Zhang, Yirui Eric Zhou, Yuqi Xue, Yiqi Liu, and Jian Huang

the data across the heterogeneous memories to explore the data lo-
cality [12, 25, 27, 34]. This inevitably complicates the GPU memory
management and hurts the development productivity.

Ideally, we wish to transparently expand the GPU memory using
low-cost flash memory, while achieving similar performance as
that of the GPU with unlimited on-board DRAM. Our character-
ization study of diverse DNN models (see §3) shows that this is
feasible. We disclose that (1) only a small portion (less than 10%) of
tensors are active in each DNN training iteration, and (2) a majority
of inactive tensors remain inactive for a long period of time (see
Figure 3). This offers sufficient opportunities for us to move tensor
data across heterogeneous memory devices. Therefore, if we can
intelligently move inactive tensors from the fast GPU memory to
the slow memories (i.e., host memory and flash memory), we can
not only improve the utilization of the precious GPU memory but
also hide the data access overheads of the slow memories.

To achieve the aforementioned goals, we have to overcome three
major challenges. First, to enable intelligent tensor migrations, we
need to capture the memory demand and lifetime of different ten-
sors in a deep learning model. The tensor-level semantic knowledge
will serve as the guidance for scheduling tensor migrations. Second,
as different tensors have different properties (i.e., tensor size and life-
time in Figure 4), we need to carefully decide which tensor should
be migrated, where it should be migrated to, and when it should
be migrated. Third, the tensor migrations should be transparent to
applications, and the migration should be executed in an automated
manner without requiring manual effort from developers.

In this paper, we present G10, a unified GPUmemory and storage
architecture that enables smart tensor migrations for scaling the
GPU memory transparently using flash memory, while tolerating
the performance overheads of slow flash accesses. G10 consists of
three major components: (1) a tensor vitality analyzer for extracting
the semantic knowledge of tensors in a deep learning model, (2) a
tensor migration scheduler for planning the tensor migrations in
advance, and (3) a unified memory system for simplifying the GPU
memory management and enabling transparent tensor migrations.

The tensor vitality analyzer works with deep learning frame-
works like PyTorch to track all the tensors in a DNN model. It
leverages the execution graph generated by the compiler to learn
the size and lifetime of each tensor as well as its dependency on
other tensors. Therefore, the analysis procedure is almost free at the
compilation stage. Based on the extracted semantic knowledge of
tensors, the tensor migration scheduler of G10 will plan the tensor
migrations in advance before executing the model training process.

To maximize the benefits of tensor migrations, G10 prefers to
migrate large tensors that will be inactive for a long time to the
flash memory. Therefore, the precious GPU memory can be best
utilized for active tensors. G10 will migrate these inactive tensors
as many as possible to fully utilize the available bandwidths of
flash memory and host memory. For the inactive tensors whose
inactive time is short, G10 will make the best effort to keep them
in the GPU memory to avoid unnecessary tensor migrations. In
order to tolerate the long access delay of flash memory and host
memory, G10 also plans intelligent data prefetching in advance
with its tensor migration scheduler. The detailed algorithms of the
tensor migration scheduler will be discussed in §4.

PCIe
Switch

CPU Host Memory

SSD GPU

GPU Memory

U
ni

fie
d

Vi
rtu

al
M

em
or

y
(U

VM
)

GPUDirect Storage

Figure 1: Modern GPU memory/storage architecture.

To facilitate the tensor migration, G10 integrates the GPU mem-
ory, host memory, and flash memory as a unified memory space
by extending the Unified Virtual Memory (UVM) [6] of GPUs. G10
extends the page table of UVM by storing flash page addresses in
its leaf-level page table entries. The unified page table can point to
an address in either host memory, GPU memory, or flash memory.
As G10 plans tensor migrations, it only needs to specify the virtual
addresses of tensors. The unified memory system will conduct the
transparent address translation at runtime. This significantly simpli-
fies the GPU memory management and the compiler optimizations.

We implement G10 by extending an open-source GPU simulator
UVMSmart [20]. To evaluate G10, we run a variety of DNN models
with different batch sizes. Compared to state-of-the-art solutions,
G10 improves the end-to-end DNN training performance by up to
1.75×, while scaling the GPU memory with low-cost flash memory.
With smart tensor migrations planned at the compilation stage, G10
delivers 90.3% of the performance of the ideal case assuming un-
limited GPU memory. Our sensitivity analysis shows that G10 still
has significant benefits, as we scale the GPU-SSD PCIe bandwidth.
Overall, we make the following contributions:

• We conduct a characterization study of the memory usage of
diverse DNN training workloads, and show that the predictable
tensor behaviors of DNN models provide sufficient opportunities
for enabling smart tensor migrations.

• We develop a unified GPU memory and storage architecture
named G10, and show the feasibility of scaling GPU memory
with flash memory, while achieving similar performance as the
ideal case assuming unlimited GPU memory.

• We propose a smart tensor migration mechanism that can intelli-
gently plan tensor migrations across heterogeneous memories at
the compilation stage, based on the extracted semantic knowl-
edge of tensors.

• We evaluate G10 against state-of-the-art GPU memory solutions
and show its benefits for various DNN models.

2 BACKGROUND AND MOTIVATION
In this section, we first present modern GPU memory and storage
architecture. After that, we discuss existing approaches to scaling
GPU memory, and their limitations.

2.1 GPU Memory and Storage Architecture
We demonstrate the system architecture of modern GPU memory
and storage in Figure 1. The GPU and storage devices like SSDs are

G10: Enabling An Efficient Unified GPU Memory and Storage Architecture with Smart Tensor Migrations MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

connected with the host machine through the Peripheral Compo-
nent Interconnect Express (PCIe) [1]. While GPU has its on-board
memory, the memory capacity is constrained by the DRAM scaling
wall and the limited on-board space for memory packages [67].
Therefore, their memory cannot host the entire working set of
large-scale deep learning workloads. To address this problem, GPUs
follow the same way of managing memory/storage devices in CPU-
centric computing, and use the storage device as a swapping disk.
If a page requested by the GPU is not in its memory, a page fault
will happen. And the GPU will inform the host to handle the page
fault, load the page from the storage device, and move it to the GPU
memory, causing significant data movement overhead.

2.2 Approaches to Scaling GPU Memory
ExpandGPUmemorywith hostmemory.Compared to the GPU
memory, the host machine usually equips a larger memory with
limited bandwidth, making it a natural option for expanding GPU
memory. While developers can manually swap the data between
the host and GPU, modern GPUs make this procedure transparent
with unified virtual memory (UVM) [62, 63]. UVM enables a unified
and coherent virtual memory space between the host and GPU,
so application data can be allocated to the space and accessed by
host and GPU with shared virtual addresses. With the cooperation
of GPU hardware and runtime, UVM maintains data consistency
transparently and enables on-demand data migrations between the
host and GPU at page granularity.

Upon accessing a UVM page absent in the GPU memory, a GPU
page fault will be triggered to request a data migration from the
host [6, 71]. When the GPU memory is fully occupied, the least
recently used pages are evicted from the GPU memory to the host
memory. To improve the swapping efficiency, prior studies [10,
20, 25, 27, 34, 40, 49, 51] developed optimization techniques for
improved data locality. However, GPU memory still cannot scale
purely relying on the host memory to meet the increasing demands
of deep learning workloads, especially those large ones.
Expand GPU memory with flash memory. An alternative ap-
proach is to expand GPU memory with SSDs, as shown in Figure 1.
The rapidly shrinking process technology has allowed SSDs to
boost their bandwidth and capacity by increasing the number of
chips. However, the GPU has to communicate with the host CPU
to access data on the SSD, which incurs significant performance
overhead [36, 56, 57]. Most recently, NVIDIA’s GPUDirect Storage
allows GPU to bypass the host CPU and directly access the SSD
via the PCIe interface [21]. AMD’s DirectGMA [7] also enables a
similar functionality.

However, current approaches of using flash memory to expand
GPU memory are still suffering from suboptimal performance,
as they cannot efficiently hide the slow flash accesses. A recent
study proposed to offload intermediate data of DNN models to the
SSD [12], and overlap the GPU processing with flash data accesses.
However, due to the lack of rich semantic knowledge of tensors,
there is still much space for improvement. In this paper, we conduct
a characterization study of the semantic knowledge of tensors, and
demonstrate the unexplored opportunities in §3.

0 200 400 600 800 1000 1200
CUDA Kernel Index

(a) BERT-128

1%

10%

100%

all active

0 200 400 600 800 1000 1200 1400
CUDA Kernel Index

(b) ViT-512

1%

10%

100%

0 200 400 600 800 1000 1200
CUDA Kernel Index
(c) ResNet152-512

1%

10%

100%

0 200 400 600 800

CUDA Kernel Index
(d) Inceptionv3-512

1%

10%

100%

M

em
or

y
C

on
su

m
pt

io
n

Figure 2: Memory consumption of all and active tensors (w.r.t.
peak memory consumption in a single training iteration).
CUDA kernel indexes are in execution order.

3 GPU MEMORY CHARACTERIZATIONS
In this section, we first study the memory usage patterns of DNN
training for representative real-world large models listed in Table 1.
We analyze the DNN dataflow graph to extract useful DNN seman-
tics and profile the execution of each CUDA kernel on an NVIDIA
A100 GPU. For ease of discussion, we define that a tensor is active
at a certain time if it is used by the currently executing kernel, or
inactive otherwise. We summarize our findings as follows.
Smallmemory requirement of active tensors.Wefirst study the
total memory demand of a single training iteration. Figure 2 shows
the amount of GPUmemory required by active tensors and the total
memory required during a training iteration. For most DNNmodels,
active tensors only account for less than 10% (1% on average) of the
total memory requirement. While the memory capacity required by
the entire DNN can greatly exceed GPU memory, each layer only
accounts for a small portion. For example, the largest kernel in our
studied models occupies 5.7GB of memory, much smaller than the
40GB available memory of A100. This gives abundant opportunities
to leverage the unused memory for preparing the tensors required
by the next kernel, enabling efficient overlapping of GPU compute
and memory swapping.

Observation (O1):During DNN training, only a small portion
of tensors are active and required in GPU DRAM. Most tensors
are inactive and can be swapped out.

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Haoyang Zhang, Yirui Eric Zhou, Yuqi Xue, Yiqi Liu, and Jian Huang

0% 20% 40% 60% 80% 100%
(a) BERT-128

101
102
103
104
105
106
107

In
ac

tiv
e

Ti
m

e
(μ

s)

0% 20% 40% 60% 80% 100%
(b) ViT-512

101
102
103
104
105
106
107

0% 20% 40% 60% 80% 100%
(c) ResNet152-512

101
102
103
104
105
106
107
108

In
ac

tiv
e

Ti
m

e
(μ

s)

0% 20% 40% 60% 80% 100%
(d) Inceptionv3-512

101
102
103
104
105
106
107
108

% of Tensor Inactive Periods

Figure 3: Distribution of tensor inactive period lengths.

100 102 104 106

Inactive Time (μs)

104

105

106

107

108

Si
ze

 (b
yt

e)

(a) BERT-128

100 101 102 103 104 105 106

Inactive Time (μs)

104

105

106

107

108

(b) ViT-512

100 102 104 106 108

Inactive Time (μs)

104

105

106

107

108

109

Si
ze

 (b
yt

e)

(c) ResNet152-512

100 102 104 106 108

Inactive Time (μs)

104

105

106

107

108

109

(d) Inceptionv3-512

Figure 4: The distribution of inactive periods of tensors hav-
ing different sizes.

Long unused time of inactive tensors. To understand the mem-
ory usage pattern of inactive tensors, we study how long a tensor
remains inactive. We define an inactive period as a time interval
during which the tensor remains inactive until it is used by another
kernel. Figure 3 shows the distribution of lengths of the inactive pe-
riods for all tensors. For CNN models (ResNet152 and Inceptionv3),
more than 60% of the inactive periods last longer than 107µs. For
Transformer models (BERT and ViT), about 50% of the inactive
periods last longer than 105µs. This indicates that many tensors
have inactive periods longer than the SSD latency (e.g., 20µs), which
provides opportunities for us to swap out these tensors to external
SSD devices with negligible performance penalties.

The long unused time of inactive tensors is the result of the
temporally sparse tensor access pattern during DNN training. In
a typical DNN dataflow graph, one tensor only needs to be used
twice, one in the forward pass and the other in the backward pass,

unless the tensor is involved in a branch or join layer. Although
the dataflow graphs of some DNN models may have a complex
topology consisting of multiple branches, joins, and unrolled loops,
the overall dataflow still tends to be linear, so each tensor is only
used for a few times.

Observation(O2): During DNN training, many tensors stay
inactive for a long time period. They can be safely swapped
out before being needed again by any kernel.

Diversity of inactive tensors. Figure 4 shows that the inactive
periods of tensors have diverse lengths (e.g., ranging from ∼10µs
to 100s in Inceptionv3-512). The inactive tensors also have vastly
different sizes (e.g., from less than 10KB to more than 2.7GB in
Inceptionv3-512), and their distribution is quite sparse. In fact, over
60% to 80% of inactive periods are able to hide the swapping latency,
indicating that we have sufficient opportunities to swap tensors.

When we decide to swap out a tensor, we can reduce the GPU
memory consumption during the tensor’s inactive period. The di-
versity of inactive tensors introduces challenges to the swapping
algorithm design, as different swapping decisions can have differ-
ent benefits and I/O costs. To maximize the efficiency of memory
swapping, it is important to choose those tensors that can reduce
the memory usage by the largest amount, for the longest time, and
with the lowest I/O cost.

Observation(O3): Different swapping decisions impact GPU
memory consumption differently in both time and space, given
the different sizes and inactive period lengths of tensors. To
maximize memory efficiency, we should swap out the most
beneficial tensors.

Complexity of scheduling tensor swapping. In Figure 2, we
observe that the memory consumption of a DNN program is not
uniform throughout its entire execution. As we make tensor swap-
ping decisions, the GPUmemory consumption pattern also changes
as tensors are swapped in or out at runtime. Moreover, each swap
occupies bandwidth of GPU-Host and GPU-SSD communications.
Consequently, the above complexities render a static policy inef-
fective for deciding which tensor should be evicted and what time
this eviction should occur.

Observation (O4) The GPU memory consumption changes
throughout the DNN training process and is affected dynam-
ically by tensor swapping decisions. Hence, a static tensor
swapping policy is insufficient for finding a globally optimized
swapping plan.

4 G10 DESIGN
4.1 System Overview
We show the G10 architecture in Figure 5. It has three major com-
ponents: (1) a tensor vitality analyzer that quantifies the tensor size
and liveness as we compile a DNN model (§4.2); (2) a tensor migra-
tion scheduler for planning the tensor migrations in advance (§4.3
and §4.4); and (3) a unified memory system for simplifying GPU

G10: Enabling An Efficient Unified GPU Memory and Storage Architecture with Smart Tensor Migrations MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

DNN Model
Op 0

...

Op 1

Op 2

Op 4

Op 3

Tensor Vitality Analysis (§4.2) Smart Tensor Migration Scheduler

Smart Tensor
Eviction (§4.3)

 cudaLaunchKernel(...);
 cublasSgemm(...);
 g10_pre_evict(v_addr,
target);
 CUDNN_CALL(...);
 g10_prefetch(v_addr);
 ...

G10 Instrumented Program

Host

CUDA
Runtime

User SpaceCPU Main Memory

SSD

PCIe
Switch

GPU Main Memory

GPU

Offline

Runtime

GPU
Driver

Kernel Space

Runtime Migrations in UVM (§4.6)

Extended UVM
Migration Arbiter

Smart Migration Handler

Smart Tensor
Prefetching (§4.4)

time

si
ze

Write
Read

I/O Bandwidth Utilization

Unified Memory/Storage Space (§4.5)

Migration Metadata Queues

time

m
em

 p
re

ss
ur

e

evicted tensor inactive period i

A

time

Size

Figure 5: System architecture of G10.

memory management and enabling transparent tensor migrations
(§4.5 and §4.6).

Given a DNN model, G10’s tensor vitality analyzer will work
with DNN compilers to track all the tensors and their dependencies,
and quantify their sizes and lifetime (i.e., semantic knowledge of
tensors). With these knowledge, the tensor migration scheduler
will plan the optimized execution schemes of tensors, with the goal
of maximally overlapping the GPU computation and tensor migra-
tions. Identifying a globally optimized tensor migration plan is a
dynamic optimization problem, as each tensor migration decision
will affect subsequent decisions, due to its impact on the GPU mem-
ory pressure, and GPU-SSD and GPU-Host bandwidth utilizations.
Therefore, we used a dynamic algorithm to iteratively find the best
tensor candidates for eviction and prefetching. After that, G10 adds
the eviction and prefetch instructions into the compiled program.
GPU will execute these instructions at runtime with the unified
GPU memory and storage architecture. As the GPU memory, host
memory, and SSD are combined into a unified space, the tensor
migrations are fully transparent to developers and DNN workloads.
We will describe each component of G10 as follows.

4.2 Tensor Vitality Analysis
Identifying global tensors and intermediate tensors.We first
categorize the tensors based on their lifetimes in a DNN training
iteration (i.e., one round of forward and backward propagation). As
shown in Figure 6, a global tensor such as model weights (e.g., W1)
is used across multiple training iterations. It will be allocated in the
unified memory space at the beginning of the DNN program. An
intermediate tensor, such as the activation and gradient (e.g., A1 and
dA2), is used within one iteration. We define the tensor as born the
first time when it was used, and as dead after the last time it was
used. Intermediate tensors can be deallocated after their deaths to
free up GPU memory.

Identifying tensor inactive time periods. When an operator
is being executed on GPU, both its input and output tensors are
active, and should be present in GPU memory. Otherwise, a tensor
is inactive, if it is not being used by the currently executing kernel
and is not yet dead. We define an inactive time period of a tensor
as the period during which the tensor is inactive and not dead
(i.e., it is not being used right now but will be used in the future).
For a complex DNN program, a tensor may have multiple inactive
time periods and can be swapped in and out multiple times (e.g.,
W1 and A0). Both global and intermediate tensors can be inactive,
and the inactive time period of a global tensor may span across
two consecutive training iterations. For example, W1 turns inactive
during the backward pass of the current iteration, and it becomes
active again in the forward pass of the next.

The inactive time periods of all tensors indicate when a tensor is
safe to be migrated out and when it must be migrated back. As DNN
programs have predictable performance and dataflow patterns, G10
performs offline compile-time profiling, and uses the execution
times of the GPU kernels to estimate the lengths of the inactive
time periods. Using the tensor sizes, the storage bandwidth, and
the GPU-Host bandwidth, G10 estimates the eviction and prefetch
overheads of each tensor. G10 then leverages all the inactive time
periods to generate a globally optimized execution plan.

4.3 Smart Tensor Eviction
To generate a globally optimized migration plan, the smart tensor
eviction algorithm must address the following challenges. First,
we must utilize the limited GPU on-board memory to store the
most beneficial tensors. As tensors have different sizes and inactive
period lengths, they contribute different degrees of GPU memory
pressure. Thus, evicting some tensors (e.g., large tensors with long
inactive periods) yields more benefits in reducing GPU memory
pressure. Second, we must consider both SSD and host memory as

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Haoyang Zhang, Yirui Eric Zhou, Yuqi Xue, Yiqi Liu, and Jian Huang

Conv1(F) A1

A1

 Conv2(B)

W2A2
dW2

Conv2(F) A2 Add(F) A3A0 Add(B) dA3 dA2 Conv1(B)

W1A1
dW1

dA1

A0

dA0

W1 W2

A2
dA2

dW2

W1
A0

tensor is active tensor is inactive tensor is not aliveoperators A0 intermediate tensors W1 global tensors

Forward Pass Backward Pass

Figure 6: An example of tensor vitality analysis for a residual basic block. Operators in forward propagation and in backward
propagation are marked as Op(F) and Op(B), respectively. Ax and Wx are activation tensors and weight tensors, respectively. dAx
and dWx are the corresponding gradient tensors.

Algorithm 1: Smart Tensor Eviction Algorithm.
Input: 𝑔𝑝𝑢_𝑐𝑎𝑝 ← the GPU on-board memory capacity

𝑡𝑒𝑛𝑠𝑜𝑟𝑠 ← the list of all intermediate tensors
𝑝𝑒𝑟𝑖𝑜𝑑𝑠 ← the list of all tensor inactive periods

Output: A list of G10 tensor migration instructions
1 Function 𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔(𝑔𝑝𝑢_𝑐𝑎𝑝, 𝑡𝑒𝑛𝑠𝑜𝑟𝑠, 𝑝𝑒𝑟𝑖𝑜𝑑𝑠):
2 for i = 0; i < periods.size; i++ do
3 if𝑚𝑎𝑥 (𝑚𝑒𝑚_𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒) < 𝑔𝑝𝑢_𝑐𝑎𝑝 then
4 break
5 sort 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 by critical_mem_pressure_reduction)
6 if 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 [0] .𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙_𝑚𝑒𝑚_𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒_𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 > 0

then
7 𝑡_𝑟 ← periods[0].start_time
8 𝑡_𝑠 ← periods[0].tensor_size / BW_SSD
9 if (to_ssd_traffic is full during 𝑡_𝑟 to 𝑡_𝑟 + 𝑡_𝑠) then
10 if host mem isn’t full during periods[0] then
11 schedule pre-eviction(periods[0].tensor, host)

at 𝑡_𝑟
12 periods.erase(0)
13 update memory pressure and I/O traffic
14 continue
15 schedule pre-eviction(periods[0].tensor, SSD) at 𝑡_𝑟
16 update memory pressure and I/O traffic
17 periods.erase(0)

potential migration destinations, as they provide different band-
widths, capacities, and different migration overheads. Ideally, we
aim to exploit both the high migration bandwidth of host mem-
ory and the large capacity of SSD. Third, we should best utilize
the available migration bandwidth, as DNN workloads are mostly
bandwidth-sensitive. The algorithm should also choose the best
timings for tensor migrations.

To this end, we propose a smart eviction scheduling algorithm
that iteratively finds the best eviction candidates (i.e., tensor inactive
periods) in each training iteration at compile time. The algorithm
tracks the GPUmemory consumption and the migration bandwidth
utilization to evaluate potential benefits of an eviction. We describe
its key ideas as follows.

time

m
em

 p
re

ss
ur

e

Evict
Fetch

I/O Bandwidth Utilization

3

time

I/O Bandwidth Utilization
2

A
B

Evict tensor X in the inactive period A

Inactive Periods Inactive Periods

(1)

(2)

(3)

1

GPU Capacity

tensor X

GPU Capacity

m
em

 p
re

ss
ur

e

Evict
Fetch

Figure 7: An example of state transition in G10’s smart mi-
gration scheduling algorithm.

Selecting eviction candidates. To determine the best eviction
candidate, we holistically estimate the benefit and cost of each
eviction candidate. To quantify the eviction benefit, we define the
GPU memory pressure as the total size of non-evicted tensors in
GPU memory at time 𝑇 . If the pressure exceeds the GPU memory
capacity at any time, hardware page faults will occur and harm
the performance. Thus, the eviction candidate is beneficial if it
reduces the memory pressure exceeding the capacity, as shown in
the shaded area in Figure 7(2). The area of the shaded area quantifies
the benefit of eviction: a larger shaded area implies a larger tensor
or longer inactive period. Using this criterion, G10 sorts the inactive
periods of all tensors to find the best eviction candidates.

The cost of an eviction candidate is quantified as the sum of
eviction and prefetch latencies of this tensor. Thus, G10 favors
migrations with low migration latencies, as other migrations may
exclusively occupy the interconnect for a longer time and cause
contentions, as shown in Figure 7(3).

For example, in Figure 7(1), we designate the best candidate as
tensor 𝑋 ’s inactive period𝐴. By evicting 𝑋 during𝐴, we reduce the
most pressure over the capacity limit (i.e., largest shaded area 3 in
Figure 7(2)) while causing the least I/O bandwidth overhead (shown
as 1 + 2 in Figure 7(3)). Specifically, it has highest benefit-cost
ratio of 3 /(1 + 2).

G10: Enabling An Efficient Unified GPU Memory and Storage Architecture with Smart Tensor Migrations MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

time

m
em

 p
re

ss
ur

e

evicted tensor inactive period i

A

time

Tensor Size

latest safe prefetch timeoptimized prefetch time

The GPU capacity

Figure 8: An example of scheduling prefetch time for one
evicted inactive tensor.

Choosing eviction destination. After selecting the candidate
tensors, we need to decide between two potential migration desti-
nations, SSD and host memory, as they provide different capacities
and bandwidths. In G10, we always attempt to evict tensors to the
SSD first, due to its large capacity. In contrast, host memory only
offers a limited memory capacity, and thus naïvly evicting to host
memory easily consumes up the capacity, and falls back to evicting
to SSD eventually. However, in some cases, we still want to lever-
age the valuable host memory for our tensor migration. Compared
to the SSD, the host DRAM offers much higher access bandwidth.
Thus, we only evict a tensor to host memory, when the SSD traffic
is under high pressure, as shown in line 7-17 in Algorithm 1. In this
way, G10 exploits the large SSD capacity when its bandwidth is
sufficient, and utilizes the high migration bandwidth of GPU-Host
when the SSD bandwidth is saturated.
Smart Tensor Eviction Scheduling. We describe the end-to-end
procedure of G10’s smart tensor eviction scheduling algorithm in
Algorithm 1. To generate an optimized migration plan, it iteratively
searches for the best eviction candidate, until the GPU memory
pressure is below the capacity limit or there are no more beneficial
eviction candidates.

The algorithm tracks the three global states throughout the
search process: (1) a set of inactive periods, (2) the estimated mem-
ory pressure versus time, and (3) the estimated bandwidth utiliza-
tions. In each iteration of the algorithm, it selects one eviction
candidate, chooses where to evict this tensor as described above,
and updates the three states accordingly.

4.4 Smart Tensor Prefetching
To maximize memory pressure suppression, the smart tensor evic-
tion algorithm assumes the prefetch to be performed at the latest
time that does not cause data idleness, which is defined as the latest
safe prefetch time. However, to ensure that each prefetch completes
exactly before the respective tensor turns active, the algorithm
needs a perfect estimation on inactive period lengths and I/O traffic
status. Thus, inaccurate estimation of inactive period length or I/O
traffic status will incur stalls under this default prefetch policy.

Our insight is that for most DNN programs, the GPU memory
pressure is under the capacity limit after scheduling the evictions.
As shown in Figure 8, the GPU memory pressure, presented as
the black curve, is under the GPU capacity over time. The naïve
prefetch policy does not fully utilize the remaining GPU memory.

Based on our insight, G10 applies a smart prefetching algorithm
that prefetches evicted inactive tensors eagerly to further tolerate

1 ...
2 g10_alloc(tensor20, 40960);
3 g10_prefetch(tensor23, 40960);
4 // Kernel 2 ReLU(input, output)
5 forward_ReLU_l2(tensor5, tensor5);
6 ...
7 g10_alloc(&tensor22, 77073360);
8 g10_alloc(&tensor2914, 4110417920);
9 // Kernel 3 MaxPool2d(input, output)
10 forward_MaxPool2d_l3(tensor5, tensor20);
11 ...
12 // Kernel 4 Conv2d(input, output, filter, workspace)
13 forward_conv2d_l4(tensor20, tensor22, tensor23, tensor2914);
14 g10_free(tensor2914);
15 g10_pre_evict(tensor23, 40960, SSD);
16 ...
17 // Kernel 5 BatchNorm2d(...)
18 forward_BatchNorm2d_l5(tensor22, tensor28, tensor38, tensor39, tensor30,

tensor31, tensor32, tensor33);
19 ...

Figure 9: An example of instrumented GPU program.

imperfect migration decisions. G10 sorts all the evicted tensor inac-
tive periods in the order of their latest safe prefetch time. G10 then
traverses all evicted tensor inactive periods in order and reschedules
their prefetch beforehand if possible. Figure 8 shows an example.
For one evicted inactive period 𝑖 with the latest safe prefetch time
𝑡𝑖 , the algorithm searches backward from time 𝑡𝑖 until reaching the
earliest time 𝑡 ′

𝑖
, when GPU can hold the entire tensor safely with

the available space. In other words, the algorithm selects a time 𝑡 ′
𝑖

at which placing this tensor on GPU will not exceed GPU memory
capacity. Therefore, the algorithm schedules the prefetch for this
tensor at 𝑡 ′

𝑖
, and the GPU memory pressure curve between time 𝑡 ′

𝑖
and 𝑡𝑖 is updated. If there is not such an optimization opportunity,
the prefetch instruction will still be scheduled at time 𝑡𝑖 .
Code Instrumentation. To enable smart data migration, G10 uti-
lizes deep learning comilers to automatically insert the following in-
structions into the generatedGPU program: (1) g10_prefetch(vaddr,
size), which fetches a tensor into GPUmemory; (2) g10_pre_evict
(vaddr, size, target_loc), which evicts a tensor from GPU
memory to the SSD or host memory; (3) g10_alloc(**ptr, size),
which allocates a buffer on the GPU memory asynchronously; (4)
g10_free(*ptr), which frees the buffer asynchronously. We show
an example of instrumented GPU program in Figure 9. We will
further discuss these instructions in §4.6.

4.5 Unified GPU Memory and Storage
The diversified memory and storage hierarchy (i.e., GPU memory,
host memory, and SSD) inevitably increases the complexity of GPU
memory management, and makes it challenging for G10 to track
the memory locations for each tensor. To address this challenge, we
develop a unified memory space. Therefore, G10 can plan the tensor
migration schemes using virtual addresses, the runtime system will
rely on the unified virtual memory to conduct the address transla-
tion, and identify the physical locations of tensors transparently.

Prior studies [3, 28] proposed the unified address translation for
memory-mapped SSDs, which combines the address mapping of
SSDs into the page table of the virtual memory. Therefore, the page
table entries can directly point to the physical flash addresses. Al-
though GPU provides the unified virtual memory (UVM) to manage

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Haoyang Zhang, Yirui Eric Zhou, Yuqi Xue, Yiqi Liu, and Jian Huang

Metadata

Smart Migration Handler g10_API calls

 VPN Phy. Addr. Im

...

0x1

0x2 CPU Addr

GPU Addr

1

0

Unified Page TableMigration Metadata
Queues

Pre-eviction Queue 2

Migration Arbiter

Transfer Sets

3

SSD-GPU Migrations

CPU-GPU Migrations

4

5 Update

Prefetch Queue

Extended UVM Driver

1

Figure 10: The workflow of runtime migrations in G10.

the host memory and GPU memory in a unified space [4, 9, 22, 35],
current GPU UVM does not support flash memory.

G10 integrates the GPU memory, host memory, and flash mem-
ory into a unified memory space for enabling transparent tensor
migrations. With unified memory, all tensors are managed at the
regular 4KB page granularity. For the tensors whose size is less
than 4KB, G10 will compact them in a page to minimize the mem-
ory fragmentation across different memory types. As the GPU and
host interact with the SSD at the regular page granularity, the I/O
amplification of the SSD will not be worse than commodity SSDs.

With the UVM extension, G10 has a unified address translation
layer in the memory manager, where the flash address mappings
in the flash translation layer have been integrated into the page
table of the GPU UVM. In this case, the page table entry (PTE) will
either point to an address in host memory or GPU memory or flash
memory. G10 allows the SSD controller to update the page table
entries (PTEs), when garbage collection (GC) of the SSD moves
valid flash pages to a new flash block. G10 relies on the existing
UVM supports to maintain the consistency of the host-side unified
page table and GPU-side local page table, as well as the TLBs. As
G10 migrates tensors among GPU memory, host memory, and SSD
at page granularity, the corresponding PTEs and TLBs will also
be updated with the new page address. Since the PTE and its cor-
responding TLB are always updated, the unified memory system
handles address translations and paging to load data from SSD or
host memory to the GPU memory.

The UVM extension simplifies the programmability and enables
transparent tensor migration. Its page fault handling mechanism
may incur extra performance overhead. However, the smart tensor
migration mechanism in G10 minimizes unexpected page faults
and data migrations, which makes the UVM extension an appealing
feature (see Figure 11).

4.6 Tensor Migration with Extended UVM
G10 supports smart tensor migration with the extended UVM (§4.5).
It extends the device UVM driver to implement the smart migra-
tion handler on the host. We show the workflow of tensor migra-
tion in Figure 10. Upon executing g10_pre_evict(vaddr, size,
target_loc), CUDA runtime will send an exception to the migra-
tion handler on the host side. The migration handler will initiate the
migration of the corresponding tensor, and migrate the tensor to
the specified location target_loc via the DMA engine. Note that

G10 will rely on the unified memory system for the address transla-
tion for vaddr, and use the size to decide how many pages it will
migrate. Upon executing g10_prefetch(vaddr, size), the tensor
migration handler will access the unified memory with vaddr. It
will initiate the prefetching process and request the GPU DMA
engine to fetch the tensor from the host memory or SSD.

As shown in Figure 10, for tensor evictions and prefetching, G10
will rely on the unified page table to identify the physical locations
of tensors (1). For pre-evictions, G10 will look up the GPU page
to be evicted. After that, the migration metadata will be stored in
corresponding Migration Metadata Queues (2). The Migration Ar-
biter will select several page migrations to form the next migration
batch and store them in the Transfer Sets (3). During this proce-
dure, The G10 driver will also communicate with GPU to allocate
GPU memory on demand. The migrations in the Transfer Sets will
be batched periodically, the corresponding SSD-GPU data transfer
will be handled by the Direct Storage Access (DSA) process, and
CPU-GPU data transfer will be handled by the DMA process (4).
After the data migrations, the unified page table and corresponding
TLB entries will be updated (5).

G10 fully utilizes the GPU-Host bandwidth and storage band-
width with data batching. Migration Arbiter applies different priori-
ties to different migration queues (e.g., page faults have the highest
priority). G10 will calculate the batch number in the next round to
fully saturate the bandwidth.

5 IMPLEMENTATION DETAILS
Tensor vitality analyzer. The tensor vitality analyzer is a static
analysis tool, which is compatible with the deep learning compiler
PyTorch. The analyzer takes a DNN model and the profiled execu-
tion time of each kernel as inputs. After the static analysis (§4.2), it
generates instrumented CUDA programs.We take the instrumented
program into the simulator framework (see below) to simulate the
entire G10 system.
Simulator framework. To efficiently simulate the executions of
diverse DNN models, we first run these real models on a real A100
GPU and trace the execution of all kernels. We build a simula-
tion framework based on UVMSmart[20] and GPGPU-Sim[41] to
simulate the UVM, including the GPU page fault handling, data
migration, and address translation. Our simulator supports taking
the execution traces as input, so it can replay the kernel traces. we
believe our simulation framework reasonably models the actual
execution of DNN models, especially considering it replays real
kernel traces collected on a real GPU.

We focus on the address translation and coherency support for
the unified page tables. We modeled the latency overheads caused
by the host page fault handler, the interaction between the GPU
and CPU for the page fault handler, and page table walks, inside
our timing model for accurate measurements.

When incorporating SSD into the UVM system, we follow the
approach described in prior studies [3]. We rely on the host page
fault handing mechanism to do the address translation. Upon access
to pages that do not reside in GPU memory, the GPU page fault
handler will raise an interrupt to the host, and the host is responsible
for moving data. To simulate the SSD internals and capture their
activities, such as garbage collection (GC) and flash chip accesses,

G10: Enabling An Efficient Unified GPU Memory and Storage Architecture with Smart Tensor Migrations MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

Table 1: Evaluated DNN models and datasets.

Model # Kernels Source Dataset
BERT [16] 1368 Hugging Face CoLA
ViT [17] 1435 Hugging Face ImageNet
Inceptionv3 [59] 740 Pytorch Examples ImageNet
ResNet152 [23] 1298 Pytorch Examples ImageNet
SENet154 [26] 2318 Pytorch Examples ImageNet

Table 2: System Configuration.

CPU Main Memory 128GB DDR4
GPU NVIDIA A100
GPU Memory 40GB HBM2e
Page Size 4KB
SSD Read/Write Bandwidth 3.2/3.0 GB/s
SSD Read/Write Latency 20/16 𝜇s
SSD Capacity 3.2 TB
Interconnect PCIe Gen3 x16
GPU Page Fault Handling Latency 45 𝜇s

in our evaluation, we developed an SSD simulator based on SSD-
Sim[5] and integrated it into our simulator framework. Therefore, as
wemeasure the overall system performance during the experiments,
the internal SSD activities are considered.

6 DISCUSSION AND FUTUREWORK
Multi-GPU support. G10 can be simply extended to effectively
support multiple GPUs for three reasons. First, as multiple GPUs
share SSDs, and each GPU can run independently, we can deploy the
smart tensor migration mechanism of G10 on each GPU. Therefore,
each GPU will make its own decisions on the tensor migrations.
Second, current UVM has supported multiple GPUs, which has
created a unified memory space across the host memory and all
GPUs’ memory. The UVM extension of G10 supports multiple GPUs
by integrating the shared flashmemory space into the existing UVM
as discussed in §4.5. Third, as we increase the number of GPUs, we
may want to increase the number of SSDs for increasing aggregated
storage bandwidth. Since the SSD array (e.g., using RAID) is shared
by multiple GPUs, G10 will treat the SSD array as a shared flash
memory space and integrate it into the UVM. Our evaluation (§7.5)
will conduct the sensitivity analysis as we increase the number of
SSDs. We wish to explore the multi-GPU support as future work.

7 EVALUATION
We show that (1) G10 outperforms state-of-the-art designs by up
to 1.75× for training large DNN models that exceed GPU on-board
memory capacity (§7.2); (2) G10 supports larger batch sizes with bet-
ter performance than other designs (§7.3); (3) G10 saves host mem-
ory capacity with negligible performance degradation (§7.4); (4)
G10 improves DNN training performance with different hardware
settings (§7.5); (5) G10’s scheduling algorithm is resilient against
profiling errors (§7.6); (6) G10 has negligible negative impact on
the SSD lifetime (§7.7).

BERT
B = 256

M = 370.10%

ViT
B = 1280

M = 461.11%

Inceptionv3
B = 1536

M = 1969.46%

ResNet152
B = 1280

M = 2715.45%

SENet154
B = 1024

M = 4277.81%

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

Pe
rf

or
m

an
ce

Base UVM
FlashNeuron

DeepUM+
G10-GDS

G10-Host
G10

Figure 11: DNN training throughput normalized to the ideal
performance. B is batch size. M is the total memory consump-
tion of the DNN w.r.t. GPU memory capacity.

7.1 Experimental Setup
We evaluate G10 with diverse DNN models in Table 1, including
transformer-based models (BERT and ViT) and CNNs (ResNet, In-
ceptionv3, and SENet). The models are retrieved from PyTorch
examples [46] and the Hugging Face public repositories [29], and
the training datasets include CoLA [64] and ImageNet [37]. We use
FP32 format for the tensor representation. We vary the batch size
for each model to study the impact of different memory demands.
System configuration. Table 2 shows the hardware configuration
of our experimental testbed. We set the SSD parameters based on
Samsung Z-NAND SSD [53]. The host memory, GPU, and SSD are
connected with a PCIe interconnect that can deliver a bandwidth of
15.754 GB/s bidirectionally. We model the UVM system following
prior works [20, 71].

BERT
B = 256

M = 370.10%

ViT
B = 1280

M = 461.11%

Inceptionv3
B = 1536

M = 1969.46%

ResNet152
B = 1280

M = 2715.45%

SENet154
B = 1024

M = 4277.81%

0%

20%

40%

60%

80%

100%

E
xe

cu
tio

n
Ti

m
e

Base UVM
FlashNeuronDeepUM+ G10Compute & Data Transfer Compute Stall

Figure 12: Execution time breakdown of training (left to right:
Base UVM, FlashNeuron, DeepUM+, G10).

We compare G10 with several state-of-the-art GPU memory-
expanding solutions: DeepUM+[34] and FlashNeuron[12]. We also
evaluate G10 with different host memory capacities. As hardware
capabilities evolve over time, we conduct sensitivity analysis with
different SSD bandwidths. To summarize, we compare G10 against
the following baseline designs:

• Ideal: a GPU with infinite on-board memory, which gives the
theoretically best performance.

• Base UVM: the basic GPU-CPU-SSD UVM system with only
on-demand page migrations via page faults.

• DeepUM+: a UVM system using a correlation-based prefetcher
to prefetch data to the GPU memory. We extend the original
GPU-CPU-based DeepUM design [34] to support SSDs. Upon a
GPU page eviction, if the CPU memory is full, DeepUM+ can still
evict the page to the SSD.

• FlashNeuron [12]: a DNN training library using direct GPU-
SSD communication to selectively swap intermediate tensors
(instead of all tensors) to the SSD. Since FlashNeuron worked in

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Haoyang Zhang, Yirui Eric Zhou, Yuqi Xue, Yiqi Liu, and Jian Huang

75% 80% 85% 90% 95% 100%
(a) BERT

100

101

102

103

Sl
ow

do
w

n

75% 80% 85% 90% 95% 100%
(b) ViT

100

101

102

103

75% 80% 85% 90% 95% 100%
(c) Inceptionv3

100

101

102

103

104

75% 80% 85% 90% 95% 100%
(d) ResNet152

100

101

102

75% 80% 85% 90% 95% 100%
(e) SENet154

100

101

102

103

Base UVM FlashNeuron DeepUM+ G10

Figure 13: Distribution of kernel execution time slowdown normalized to ideal performance (lower is better).

a traditional non-UVM style, we used FlashNeuron’s memory
manager for fair comparison.

7.2 End-to-end Performance
We show the end-to-end DNN training throughput of different
benchmarks in Figure 111 On average, G10 outperforms FlashNeu-
ron by 1.56× and DeepUM+ by 1.31×. Compared to the ideal system
with infinite GPU memory, G10 unleashes 90.3% of the ideal per-
formance using limited GPU memory.
DNN training throughput. As shown in Figure 11, Base UVM
performs 4.55×worse than the ideal, due to the significant page fault
overhead. With heuristic-based tensor eviction and prefetching,
FlashNeuron and DeepVM+ improve the performance over Base
UVM by 2.46× and 3.12×, respectively. However, both of them are
still much slower than the ideal performance. Although DeepUM+
supports DNN models with large memory demands, its correlation-
based prefetching mechanism cannot capture rich DNN semantics.

G10 outperforms FlashNeuron and DeepVM+ by up to 1.75×,
which demonstrates the effectiveness of the smart tensor migration
algorithm in capturing DNN semantics. For most benchmarks, G10
achieves nearly ideal performance by exploiting the deterministic
dataflow of DNN workloads and best utilizing the limited I/O band-
width. The only exception is ViT, which has high migration I/O
bandwidth demand when the batch size is large.

To further understand the benefits of G10, we gradually enable
the features of G10. Therefore, we have (1) G10-GDS that only
supports tensor migrations between GPU and SSD; (2) G10-Host
that enables tensor migrations among GPU, host, and SSD; and (3)
G10 that extends G10-Host by having the UVM extension which
unifies the GPU memory, host memory, and SSD (§4.5). As shown
in Figure 11, G10-GDS outperforms existing solutions for most
DNN workloads, because of its smart tensor migrations. G10-Host
further improves the performance as it utilizes the host memory.
For ResNet152 workload, G10-GDS does not perform better than
DeepUM+, because G10-GDS can only migrate tensors between
GPU and SSD. However, by enabling tensor migrations between
GPU and host, G10-Host outperforms DeepUM+ by 1.23×. With
UVM extension enabled, G10 further improves the performance,
due to the reduced software overhead of accessing flash pages and
handling page faults.

1FlashNeuron fails to execute ViT and Inceptionv3 models when their batch size is
large, as the GPU memory cannot host all the tensors required for a kernel execution,
due to the limited GPU memory capacity.

BERT
B = 256

M = 370.10%

ViT
B = 1280

M = 461.11%

Inceptionv3
B = 1536

M = 1969.46%

ResNet152
B = 1280

M = 2715.45%

SENet154
B = 1024

M = 4277.81%

0

200

400

600

Tr
af

fic
 (G

B
)

Base UVM
FlashNeuron

DeepUM+
G10

GPU - SSD GPU - Host Mem

0

800

1600

2400

Tr
af

fic
 (G

B
)

Figure 14: Tensor migration traffic breakdown.

Execution time breakdown. The performance benefit of G10
comes from the better overlapping between computation and mem-
ory swapping. Figure 12 shows the percentage of time during which
tensor migrations perfectly overlap with GPU computation, and the
percentage of time when tensor migrations stall GPU computation.
Compared to all other designs, G10 has the least stall time, since it
generates a better swapping schedule than other designs.

Figure 13 further shows how many kernels are stalled by tensor
swapping. For Base UVM, more than half of the kernels (truncated
in the figure) suffer page fault overhead. FlashNeuron and DeepUM+
reduce the number of affected kernels, but both designs still cause
significant slowdown to many kernels (4%–30% of kernels). With
G10, only 1%–6% of kernels perform worse than the ideal case.
Tensor migration traffic. To understand how G10 utilizes the
available I/O bandwidth, we show the total migration traffic of GPU-
SSD and GPU-Host in Figure 14. Due to the inefficiency of heuristic-
based migration policies (e.g., LRU policy and linear selection[12]),
Base UVMand DeepUM+schedule more tensor evictions than nec-
essary. On the contrary, FlashNeurondoes not schedule a sufficient
number of evictions as it does not swap weight tensors, so it cannot
reserve enough space for future tensors in a timely manner.

We also observe that a small amount of host memory plays a
critical role for G10 to tolerate tensors that have high migration
bandwidth demands. Particularly, transformer models (BERT and
ViT) are more bandwidth-intensive, so G10 directs most of their mi-
gration traffic to the host memory. CNN models are more compute-
intensive, thus, the SSD bandwidth can sustain more than half of
the migration traffic. By fully utilizing the available bandwidth, G10
unleashes the potential of the GPU-CPU-SSD unified memory.

7.3 Performance with Varying Batch Size
As batch size varies, the performance of G10 is always the closest
to ideal among all the designs. In Figure 15, while most designs
achieve the ideal performance when the batch sizes are small and
the memory demand is low, G10 can tolerate larger batch sizes and

G10: Enabling An Efficient Unified GPU Memory and Storage Architecture with Smart Tensor Migrations MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

128256 512 768 1024
Batch Size

0

15

30

45

60

Se
qu

en
ce

 /
se

c

256 512 768 1024 1280
Batch Size

0

100

200

300

400

Im
ag

e
/ s

ec
512 768 1024128015361792

Batch Size

0

7

14

21

28

35

Im
ag

e
/ s

ec

256 512 768 1024 1280
Batch Size

0

4

8

12

Im
ag

e
/ s

ec

256 512 768 1024
Batch Size

0

2

4

6

8

Im
ag

e
/ s

ec

(a) BERT_Base (b) VIT (c) Inceptionv3 (d) ResNet152 (e) SENet154

Base UVM FlashNeuron DeepUM+ G10 Ideal

Figure 15: Training throughput with varying batch sizes.

0 32 64 128 256
Host Memory Capacity (GB)

0
10
20
30
40
50
60
70

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

256
384
512
640

0 32 64 128 256
Host Memory Capacity (GB)

0

5

10

15

20

25
768
1024
1280
1536

0 32 64 128 256
Host Memory Capacity (GB)

45

60

75

90

105

120
512
1024
1280
1536

0 32 64 128 192 256
Host Memory Capacity (GB)

80

130

180

230

280

330
768
1024
1280
1536

0 32 64 96128 256
Host Memory Capacity (GB)

90

140

190

240

290

340

(a) BERT (b) ViT (c) Inceptionv3 (d) ResNet152 (e) SENet154

256
512
768
1024

Figure 16: Execution time as we vary the host memory capacity.

0 32 64 128 256
Host Memory Capacity (GB)

2

6

10

14

18

22

26

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

DeepUM+
FlashNeuron
G10

0 32 64 128 256
Host Memory Capacity (GB)

45

70

95

120

145

170

(a) ViT (b) Inceptionv3(a) ViT (b) Inceptionv3(a) ViT (b) Inceptionv3

DeepUM+
FlashNeuron
G10

Figure 17: Performance comparison of G10, DeepUM+, and
FlashNeuron with different host memory capacity.

higher memory demands. With larger batch sizes, more tensors
must be swapped with the limited I/O bandwidth. Thus, it is more
crucial to make smart migration decisions to hide the migration
latency and avoid stalling future kernels. Despite significantly out-
performing Base UVM, DeepUM+, and FlashNeuron quickly fall
behind the ideal performance as batch size increases, due to the
sub-optimal swapping policies. G10 still timely delivers required
data to the active kernels under strict capacity and bandwidth lim-
itations in most cases, thanks to its intelligent tensor migrations.
In general, G10 outperforms FlashNeuron and DeepUM+ by up to
2.67× and 1.45×, respectively.

As batch size continues to increase, the performance of all de-
signs eventually degrades, but G10 still outperforms all other de-
signs. If the total memory consumption of the current and the
next kernel exceeds GPU memory capacity, data required by the
next kernel cannot be ready in GPU before the kernel starts. Thus,
the next kernel inevitably stalls due to poor overlapping between
computation and data transfer.

7.4 Impact of Varying Host Memory Capacity
While using the cost-efficient SSD to expand GPUmemory capacity,
G10 also leverages the host memory bandwidth to compensate
for tensors that cannot be swapped into and back from the SSD

within their inactive periods. Since most tensors do not require high
migration bandwidth (Figure 4), G10 only needs a small amount of
host memory to tolerate them. Figure 16 shows G10’s performance
with different host memory capacities. For most DNN models with
small batch sizes, 32GB of host memory is sufficient for G10 to fully
utilize the migration bandwidth between the host and GPU. The
host memory capacity demand grows linearly with the batch size,
as the sizes of the migrated tensors grow linearly.

As we vary the host memory capacity, we also compare G10
with DeepUM+ and FlashNeuron. We use two representative mod-
els: ViT (transformer) with the batch size of 1024 and Inceptionv3
(CNN) with the batch size of 1280. We show the results in Figure 17.
When there is no host memory, G10 outperforms DeepUM+ and
FlashNeuron by 2.58× and 1.04× on average, respectively. This is
because DeepUM+ relies on conventional GPU UVM and incurs a
significant number of page faults. As we increase the host memory
capacity, the performance of DeepUM+ is improved, however, it
still performs 1.26× worse than G10. As FlashNeuron fully relies
on GPUDirect Storage and does not use host memory, its perfor-
mance is barely affected as we vary the host memory capacity.
Because of smart data migrations, G10 always performs better than
FlashNeuron (1.33× on average).

7.5 Impact of Varying SSD Bandwidth
We now examine G10 with different SSD bandwidths (e.g., stacking
multiple SSDs or using a higher-end SSD). For increased bandwidths,
we assume the interconnect is PCIe 4.0 x16 (32 GB/s). In Figure 18,
G10 outperforms all other designs regardless of the SSD bandwidth.
For all benchmarks, 1 to 4 SSDs (up to 12.8 GB/s) are sufficient for
G10 to achieve 90% to 100% of the ideal performance. BERT and ViT
fail to attain the ideal performance because they are bottlenecked
by the interconnect bandwidth (i.e., always swapping to host still
cannot satisfy the bandwidth requirement). G10 exploits the high
migration bandwidth of the host memory while best utilizing the
SSD to reduce host memory pressure (§7.4). In contrast, even with
enough SSDs to saturate the interconnect bandwidth, FlashNeuron

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Haoyang Zhang, Yirui Eric Zhou, Yuqi Xue, Yiqi Liu, and Jian Huang

6.4 12.8 19.2 25.6 32.0
SSD Bandwidth (GB/s)

0%

20%

40%

60%

80%

100%

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

6.4 12.8 19.2 25.6 32.0
SSD Bandwidth (GB/s)

0%

20%

40%

60%

80%

100%

6.4 12.8 19.2 25.6 32.0
SSD Bandwidth (GB/s)

0%

20%

40%

60%

80%

100%

6.4 12.8 19.2 25.6 32.0
SSD Bandwidth (GB/s)

0%

20%

40%

60%

80%

100%

6.4 12.8 19.2 25.6 32.0
SSD Bandwidth (GB/s)

0%

20%

40%

60%

80%

100%

(a) BERT_Base (b) VIT (c) Inceptionv3 (d) ResNet152 (e) SENet154

Base UVM FlashNeuron DeepUM+ G10

Figure 18: Performance with varying SSD bandwidth (normalized to ideal).

BERT
B = 256

ViT
B = 1280

Inceptionv3
B = 1536

ResNet152
B = 1280

SENet154
B = 1024

0.980

0.985

0.990

0.995

1.000

1.005

N
or

m
al

iz
ed

Pe
rf

or
m

an
ce

0% ±5% ±10% ±15% ±20%

Figure 19: Performance of G10 under various degrees of ker-
nel timing prediction errors (normalized to no error).

and DeepUM+ still only achieve 70%-80% of ideal performance for
BERT and ViT.

7.6 Impact of Profiling Errors
To understand the robustness of G10’s scheduling algorithm against
profiling errors, we add random noises to the execution time of
each kernel in our simulator. Figure 19 shows the performance of
G10 with various degrees of profiling errors. For all benchmarks,
the performance degradation is under 0.5% even when the profiling
error is ±20%. The profiling errors only affect the estimation of
tensor inactive period lengths. G10 tolerates such errors by eagerly
prefetching a tensor before it is used (§4.4). In most cases, the early
prefetch can tolerate the profiling inaccuracy.

7.7 Impact on SSD Lifetime
As reported in the released datasheet of Samsung Z-SSD SZ985[53],
its device endurance is 30 Drive Writes Per Day (DWPD) for five
years. According to our study, DNN workloads incur almost 50%
writes and 50% reads. In this case, the SSD lifetime of G10 would
be 30 DWPD * 1825 days (5 years) * 3.2TB / 3 GB/s * 2 = 3.7 years,
when it is used continuously. Considering DNN workloads are data
intensive and a commodity SSD usually lasts 3-5 years, the impact
on SSD lifetime is not much of a concern. Based on Figure 14, we
further break down the traffic into reads and writes. G10 incurs
1.37× and 2.20× less writes than DeepUM+ and FlashNeuron, re-
spectively. As SSD lifetime is affected by the write traffic, G10 can
achieve improved lifetime than state-of-the-art solutions.

8 RELATEDWORK
GPU memory wall. DNN workloads are heavily using GPUs.
They rely on GPU memory and host memory to host their working
sets. However, due to the limited capacity, they cannot host large
models [2, 15, 18, 39, 45]. An alternative approach is to bring Flash
closer to GPUs, such as GPUDirect Storage [21], ZnG [67, 68], and
AMD’s SSG [19, 61]. ZnG replaced GPU memory with flash chips
and hard coded the flash addresses in the GPU MMU [67]. SSG
and GPUDirect Storage enable GPU to directly communicate with

SSDs via the PCIe interface [19]. Unfortunately, their performance
is bottlenecked by the PCIe bandwidth. In this paper, we develop a
unified GPU memory system, and best utilize tensor behaviors to
overcome the bottlenecks of slow memories.
New memory technologies. To overcome the memory scaling
wall, researchers have been mostly focused on developing scalable
memory technologies [43, 50, 70]. For instance, HBM [8, 24] was
produced to meet the bandwidth requirement of accelerators, but
their capacity is still limited. Intel released its Optane persistent
memory [31], and Samsung released its ultra-low latency SSDs [54].
G10 is compatible with the new and emerging memory and storage
devices, it leverages low-cost memories to scale the GPU memory
while reaching near-to-ideal performance.
Unifiedmemory and storage. Prior studies showed that SSDs can
be used as memory via memory-mapped interface [3, 11, 14, 28, 33,
55, 69]. However, they were designed for CPU-centric computing
and cannot be directly applied to GPUs. NVIDIA and AMD have
been supporting UVM in their GPU products by enabling unified
memory between the host and GPU [62, 63]. G10 advances the
architecture and integrates flash memories into the unified memory
space. To optimize data movements between the host and GPU
memory, prior studies [20, 25, 27, 34, 49, 51] explored data localities
of DNN workloads. G10 shares the same purpose with them. How-
ever, different from the studies like ZeRO series[48, 49, 52] that
offload tensors at a coarse (DNN layer) granularity, G10 enables
tensor migrations at page granularity, and develops an active-time-
aware tensor migration scheme.

9 CONCLUSION
We present G10, a unified GPUmemory and storage architecture for
scaling deep learning workloads. G10 is driven by our observation
that the predictable tensor behaviors offer sufficient opportunities
for G10 to make smart data migrations. Thus, we can overlap the
GPU computation and flash accesses. With diverse DNN training
workloads, we show that G10 can achieve near-ideal performance.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful comments
and feedback. This work was partially supported by NSF grant CCF-
2107470, NSF CAREER Award CNS-2144796, and a grant from the
Defense Advanced Research Projects Agency (DARPA) under the
award number HR00112390029. The views, opinions and/or findings
expressed are those of the author and should not be interpreted
as representing the official views or policies of the Department of
Defense or the U.S. Government.

G10: Enabling An Efficient Unified GPU Memory and Storage Architecture with Smart Tensor Migrations MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

REFERENCES
[1] [n. d.]. PCIe 3.0 Specification. https://pcisig.com/specifications.
[2] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manju-
nath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon Murray,
Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke,
Yuan Yu, and Xiaoqiang Zhang. 2016. TensorFlow: A System for Large-Scale
Machine Learning. In Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’16). Savannah, GA.

[3] Ahmed Abulila, Vikram SharmaMailthoday, Zaid Qureshi, Jian Huang, Nam Sung
Kim, Jin jun Xiong, and Wen mei Hwu. 2019. FlatFlash: Exploiting the Byte-
Accessibility of SSDs within A Unified Memory-Storage Hierarchy. In Proceedings
of the 24th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’19). Providence, RI.

[4] Neha Agarwal, David Nellans, Mark Stephenson, Mike O’Connor, and StephenW.
Keckler. 2015. Page Placement Strategies for GPUs within Heterogeneous Mem-
ory Systems. In Proceedings of the Twentieth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS’15)
(Istanbul, Turkey). 607–618.

[5] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis, Mark Manasse,
and Rina Panigrahy. 2008. Design Tradeoffs for SSD Performance. In Proceeding
of the USENIX 2008 Annual Technical Conference (USENIX ATC’08). Boston, MA.

[6] Tyler Allen and Rong Ge. 2021. In-Depth Analyses of Unified Virtual Memory
System for GPU Accelerated Computing. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC ’21). St. Louis, Missouri.

[7] AMD DirectGMA. [n. d.]. https://www.bitflow.com/technology/directgma/.
[8] AMD High Bandwidth Memory. [n. d.]. https://www.amd.com/en/technologies/

hbm.
[9] Rachata Ausavarungnirun, Joshua Landgraf, VanceMiller, Saugata Ghose, Jayneel

Gandhi, Christopher J. Rossbach, and Onur Mutlu. 2017. Mosaic: A GPU Mem-
ory Manager with Application-Transparent Support for Multiple Page Sizes. In
Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO’17) (Cambridge, Massachusetts).

[10] Ammar Ahmad Awan, Ching-Hsiang Chu, Hari Subramoni, Xiaoyi Lu, and
Dhabaleswar K. Panda. 2018. OC-DNN: Exploiting Advanced Unified Memory
Capabilities in CUDA 9 and Volta GPUs for Out-of-Core DNN Training. In 2018
IEEE 25th International Conference on High Performance Computing (HiPC). 143–
152. https://doi.org/10.1109/HiPC.2018.00024

[11] Anirudh Badam, Vivek S. Pai, and David W. Nellans. 2013. Better Flash Access
via Shape-shifting Virtual Memory Pages. In Proceedings of the First ACM SIGOPS
Conference on Timely Results in Operating Systems (TRIOS ’13). Farmington, PA,
Article 3, 14 pages. https://doi.org/10.1145/2524211.2524221

[12] Jonghyun Bae, Jongsung Lee, Yunho Jin, Sam Son, Shine Kim, Hakbeom Jang,
Tae Jun Ham, and Jae W. Lee. 2021. FlashNeuron: SSD-Enabled Large-Batch
Training of Very Deep Neural Networks. In 19th USENIX Conference on File and
Storage Technologies (FAST 21). USENIX Association, 387–401. https://www.
usenix.org/conference/fast21/presentation/bae

[13] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Pra-
fulla Dhariwal, ArvindNeelakantan, Pranav Shyam, Girish Sastry, AmandaAskell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language Models are Few-Shot Learners. In Advances in Neural
Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan,
and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., 1877–1901. https://proceedings.
neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

[14] Adrian M. Caulfield, Laura M. Grupp, and Steven Swanson. 2009. Gordon: Using
Flash Memory to Build Fast, Power-efficient Clusters for Data-intensive Applica-
tions. In Proceedings of the 14th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS XIV). Washington,
DC, 217–228. https://doi.org/10.1145/1508244.1508270

[15] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
and Olivier Temam. 2014. DianNao: A Small-Footprint High-Throughput Accel-
erator for Ubiquitous Machine-Learning. In Proceedings of the 20th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’14). Salt Lake City, UT.

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[17] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2021. An Image is
Worth 16x16 Words: Transformers for Image Recognition at Scale. In Interna-
tional Conference on Learning Representations. https://openreview.net/forum?id=
YicbFdNTTy

[18] Assaf Eisenman, Maxim Naumov, Darryl Gardner, Misha Smelyanskiy, Sergey
Pupyrev, Kim Hazelwood, Asaf Cidon, and Sachin Katti. 2019. Bandana: Using
Non-Volatile Memory for Storing Deep Learning Models. In Proceedings of the
Conference on Systems and Machine Learning (SysML’19). Stanford, CA.

[19] Examining AMD Radeon Pro SSG: How NAND Changes the GPU Game. [n. d.].
https://www.tomshardware.com/news/amd-radeon-pro-ssg,32365.html.

[20] Debashis Ganguly, Ziyu Zhang, Jun Yang, and Rami Melhem. 2019. Interplay
between Hardware Prefetcher and Page Eviction Policy in CPU-GPU Unified
Virtual Memory. In Proceedings of the 46th International Symposium on Computer
Architecture (ISCA ’19). Association for Computing Machinery, Phoenix, Arizona.

[21] GPUDirect Storage: A Direct Path Between Storage and GPU Memory. [n. d.].
https://developer.nvidia.com/blog/gpudirect-storage/.

[22] Yuchen Hao, Zhenman Fang, Glenn Reinman, and Jason Cong. 2017. Supporting
Address Translation for Accelerator-Centric Architectures. In Proceedings of
the IEEE International Symposium on High Performance Computer Architecture
(HPCA’17).

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR’16). Las Vegas, NV.

[24] High Bandwidth Memory. [n. d.]. https://en.wikipedia.org/wiki/High_
Bandwidth_Memory.

[25] Mark Hildebrand, Jawad Khan, Sanjeev Trika, Jason Lowe-Power, and Venkatesh
Akella. 2020. AutoTM: Automatic Tensor Movement in Heterogeneous Mem-
ory Systems Using Integer Linear Programming (ASPLOS ’20). Association for
Computing Machinery, New York, NY, USA, 875–890. https://doi.org/10.1145/
3373376.3378465

[26] Jie Hu, Li Shen, and Gang Sun. 2018. Squeeze-and-excitation networks. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 7132–7141.

[27] Chien-Chin Huang, Gu Jin, and Jinyang Li. 2020. SwapAdvisor: Pushing Deep
Learning Beyond the GPU Memory Limit via Smart Swapping. In Proceedings of
the Twenty-Fifth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS’20). Lausanne, Switzerland.

[28] Jian Huang, Anirudh Badam, Moinuddin K. Qureshi, and Karsten Schwan. 2015.
Unified Address Translation for Memory-mapped SSDs with FlashMap. In Pro-
ceedings of the 42Nd Annual International Symposium on Computer Architecture
(ISCA ’15). Portland, OR, 580–591. https://doi.org/10.1145/2749469.2750420

[29] Huggingface, 2023. Transformers. [n. d.]. https://github.com/huggingface/
transformers/tree/main/examples/pytorch.

[30] BongjoonHyun, Youngeun Kwon, Yujeong Choi, John Kim, andMinsoo Rhu. 2020.
NeuMMU: Architectural Support for Efficient Address Translations in Neural
Processing Units. In Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS’20). Lausanne, Switzerland.

[31] Intel. 2018. 3D XPoint: A Breakthrough in Non-Volatile Memory Technology.
https://www.intel.com/content/www/us/en/architecture-and-technology/
intel-micron-3d-xpoint-webcast.html.

[32] Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter Abbeel, Joseph
Gonzalez, Kurt Keutzer, and Ion Stoica. 2020. Breaking the MemoryWall with Op-
timal Tensor Rematerialization. In Proceedings of Machine Learning and Systems
(MLSys’20).

[33] William K. Josephson, Lars A. Bongo, Kai Li, and David Flynn. 2010. DFS: A File
System for Virtualized Flash Storage. Trans. Storage 6, 3, Article 14 (Sept. 2010),
25 pages. https://doi.org/10.1145/1837915.1837922

[34] Jaehoon Jung, Jinpyo Kim, and Jaejin Lee. 2023. DeepUM: Tensor Migra-
tion and Prefetching in Unified Memory. In Proceedings of the 28th ACM In-
ternational Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 2 (Vancouver, BC, Canada) (ASPLOS 2023). As-
sociation for Computing Machinery, New York, NY, USA, 207–221. https:
//doi.org/10.1145/3575693.3575736

[35] Hyojong Kim, Jaewoong Sim, Prasun Gera, Ramyad Hadidi, and Hyesoon Kim.
2020. Batch-Aware Unified Memory Management in GPUs for Irregular Work-
loads. In Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS’20). Lau-
sanne, Switzerland.

[36] Sangman Kim, Seonggu Huh, Xinya Zhang, Yige Hu, Amir Wated, Emmett
Witchel, and Mark Silberstein. 2014. GPUnet: Networking Abstractions for GPU
Programs. In Proceedings of the 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’14). Broomfield, CO.

[37] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems.

[38] Youngeun Kwon, Yunjae Lee, and Minsoo Rhu. 2019. TensorDIMM: A Practical
Near-Memory Processing Architecture for Embeddings and Tensor Operations
in Deep Learning. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’19). Columbus, OH, USA.

[39] Youngeun Kwon and Minsoo Rhu. 2018. Beyond the Memory Wall: A Case for
Memory-Centric HPC System for Deep Learning. In Proceedings of the 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO’18). Fukuoka,
Japan.

https://pcisig.com/specifications
https://www.bitflow.com/technology/directgma/
https://www.amd.com/en/technologies/hbm
https://www.amd.com/en/technologies/hbm
https://doi.org/10.1109/HiPC.2018.00024
https://doi.org/10.1145/2524211.2524221
https://www.usenix.org/conference/fast21/presentation/bae
https://www.usenix.org/conference/fast21/presentation/bae
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1145/1508244.1508270
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://www.tomshardware.com/news/amd-radeon-pro-ssg,32365.html
https://developer.nvidia.com/blog/gpudirect-storage/
https://en.wikipedia.org/wiki/High_Bandwidth_Memory
https://en.wikipedia.org/wiki/High_Bandwidth_Memory
https://doi.org/10.1145/3373376.3378465
https://doi.org/10.1145/3373376.3378465
https://doi.org/10.1145/2749469.2750420
https://github.com/huggingface/transformers/tree/main/examples/pytorch
https://github.com/huggingface/transformers/tree/main/examples/pytorch
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html
https://doi.org/10.1145/1837915.1837922
https://doi.org/10.1145/3575693.3575736
https://doi.org/10.1145/3575693.3575736

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Haoyang Zhang, Yirui Eric Zhou, Yuqi Xue, Yiqi Liu, and Jian Huang

[40] Tung D. Le, Haruki Imai, Yasushi Negishi, and Kiyokuni Kawachiya.
2019. TFLMS: Large Model Support in TensorFlow by Graph Rewriting.
arXiv:1807.02037 [cs.LG]

[41] Jonathan Lew, Deval A. Shah, Suchita Pati, Shaylin Cattell, Mengchi Zhang, Am-
ruth Sandhupatla, Christopher Ng, Negar Goli, Matthew D. Sinclair, Timothy G.
Rogers, and Tor M. Aamodt. 2019. Analyzing Machine LearningWorkloads Using
a Detailed GPU Simulator. In 2019 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS).

[42] Ang Li, Shuaiwen Leon Song, Jieyang Chen, Jiajia Li, Xu Liu, Nathan R. Tallent,
and Kevin J. Barker. 2020. Evaluating Modern GPU Interconnect: PCIe, NVLink,
NV-SLI, NVSwitch and GPUDirect. IEEE Transactions on Parallel and Distributed
Systems 31, 1 (January 2020).

[43] Gabriel H. Loh. 2008. 3D-Stacked Memory Architectures for Multi-Core Pro-
cessors. In Proceedings of the 35th Annual International Symposium on Computer
Architecture (ISCA’08). USA.

[44] NVIDIA H100 Tensor Core GPU. [n. d.]. https://www.nvidia.com/en-us/data-
center/h100/.

[45] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong Guo. 2018.
Optimus: An Efficient Dynamic Resource Scheduler for Deep Learning Clusters.
In Proceedings of the 13th European Conference on Computer Systems (EuroSys’18).
Porto, Portugal.

[46] PyTorch, 2023. PyTorch Examples. [n. d.]. https://pytorch.org/examples/#pytorch-
examples.

[47] Zaid Qureshi, Vikram Sharma Mailthody, Isaac Gelado, Seung Won Min, Amna
Masood, Jeongmin Park, Jinjun Xiong, CJ Newburn, Dmitri Vainbrand, I Chung,
et al. 2022. BaM: A Case for Enabling Fine-grain High Throughput GPU-
Orchestrated Access to Storage. arXiv preprint arXiv:2203.04910 (2022).

[48] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. 2020. ZeRO:
Memory Optimizations toward Training Trillion Parameter Models. In Proceed-
ings of the International Conference for High Performance Computing, Networking,
Storage and Analysis (Atlanta, Georgia) (SC ’20). IEEE Press, Article 20, 16 pages.

[49] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong
He. 2021. ZeRO-Infinity: Breaking the GPUMemoryWall for Extreme Scale Deep
Learning. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. St. Louis, Missouri.

[50] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. C. Chen, R. M. Shelby, M.
Salinga, D. Krebs, S. H. Chen, H. L. Lung, and C. H. Lam. 2008. Phase-change
random access memory: A scalable technology. IBM Journal of Research and
Development 52, 4.5 (July 2008), 465–479. https://doi.org/10.1147/rd.524.0465

[51] Jie Ren, Jiaolin Luo, Kai Wu, Minjia Zhang, Hyeran Jeon, and Dong Li. 2021.
Sentinel: Efficient Tensor Migration and Allocation on Heterogeneous Mem-
ory Systems for Deep Learning. In 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). 598–611. https://doi.org/10.1109/
HPCA51647.2021.00057

[52] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase,
Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He. 2021. ZeRO-
Offload: Democratizing Billion-Scale Model Training. CoRR abs/2101.06840 (2021).
https://arxiv.org/abs/2101.06840

[53] Samsung. [n. d.]. Samsung Z-SSD SZ985. https://semiconductor.samsung.com/
resources/brochure/Brochure_Samsung_S-ZZD_SZ985_1804.pdf

[54] Samsung Z-NAND. [n. d.]. https://www.samsung.com/semiconductor/ssd/z-ssd/.
[55] Mohit Saxena and Michael M. Swift. 2010. FlashVM: Virtual Memory Manage-

ment on Flash. In Proceedings of the 2010 USENIX Conference on USENIX Annual
Technical Conference (USENIXATC’10). Boston, MA, 187–200.

[56] Sagi Shahar, Shai Bergman, and Mark Silberstein. 2016. ActivePointers: A Case
for Software Address Translation on GPUs. In Proceedings of the 43rd International
Symposium on Computer Architecture (ISCA’16). Seoul, Republic of Korea.

[57] Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett Witchel. 2013. GPUfs:
integrating file systems with GPUs. In Proceedings of the 18th International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS’13). Houston, Texas, USA.

[58] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi.
2017. Inception-v4, inception-resnet and the impact of residual connections on
learning. In Thirty-first AAAI conference on artificial intelligence.

[59] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. 2016. Rethinking the inception architecture for computer vision. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
2818–2826.

[60] Mingxing Tan and Quoc Le. 2019. Efficientnet: Rethinking model scaling for
convolutional neural networks. In International conference on machine learning.
PMLR, 6105–6114.

[61] The World’s First GPU to Break the Terabyte Memory Barrier. [n. d.]. https:
//www.amd.com/en/products/professional-graphics/radeon-pro-ssg.

[62] Unified CPU/GPU Memory Architecture Raises the Performance Bar.
[n. d.]. https://www.electronicdesign.com/technologies/microcontrollers/article/
21796296/unified-cpugpu-memory-architecture-raises-the-performance-bar.

[63] Unified Memory for CUDA Beginners. [n. d.]. https://developer.nvidia.com/blog/
unified-memory-cuda-beginners/.

[64] Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. 2018. Neural Network
Acceptability Judgments. arXiv preprint arXiv:1805.12471 (2018).

[65] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. 2017.
Aggregated residual transformations for deep neural networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 1492–1500.

[66] Sergey Zagoruyko and Nikos Komodakis. 2016. Wide residual networks. arXiv
preprint arXiv:1605.07146 (2016).

[67] Jie Zhang and Myoungsoo Jung. 2020. ZnG: Architecting GPU Multi-Processors
with New Flash for Scalable Data Analysis. In Proceedings of the ACM/IEEE 47th
Annual International Symposium on Computer Architecture (ISCA’20).

[68] Jie Zhang, Miryeong Kwon, Hyojong Kim, Hyesoon Kim, and Myoungsoo Jung.
2019. FlashGPU: Placing New Flash Next to GPU Cores. In Proceedings of the
56th Annual Design Automation Conference (DAC’19) (Las Vegas, NV, USA).

[69] Yiying Zhang, Leo Prasath Arulraj, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. 2012. De-indirection for Flash-based SSDs with NamelessWrites.
In Proc. 10th USENIX FAST. San Jose, CA.

[70] Jishen Zhao, Guangyu Sun, Gabriel H. Loh, and Yuan Xie. 2013. Optimizing GPU
Energy Efficiency with 3D Die-Stacking Graphics Memory and Reconfigurable
Memory Interface. ACM Trans. Archit. Code Optim. 10, 4, Article 24 (Dec. 2013).

[71] Tianhao Zheng, David Nellans, Arslan Zulfiqar, Mark Stephenson, and StephenW.
Keckler. 2016. Towards high performance paged memory for GPUs. In 2016 IEEE
International Symposium on High Performance Computer Architecture (HPCA).
345–357. https://doi.org/10.1109/HPCA.2016.7446077

https://arxiv.org/abs/1807.02037
https://www.nvidia.com/en-us/data-center/h100/
https://www.nvidia.com/en-us/data-center/h100/
https://pytorch.org/examples/#pytorch-examples
https://pytorch.org/examples/#pytorch-examples
https://doi.org/10.1147/rd.524.0465
https://doi.org/10.1109/HPCA51647.2021.00057
https://doi.org/10.1109/HPCA51647.2021.00057
https://arxiv.org/abs/2101.06840
https://semiconductor.samsung.com/resources/brochure/Brochure_Samsung_S-ZZD_SZ985_1804.pdf
https://semiconductor.samsung.com/resources/brochure/Brochure_Samsung_S-ZZD_SZ985_1804.pdf
https://www.samsung.com/semiconductor/ssd/z-ssd/
https://www.amd.com/en/products/professional-graphics/radeon-pro-ssg
https://www.amd.com/en/products/professional-graphics/radeon-pro-ssg
https://www.electronicdesign.com/technologies/microcontrollers/article/21796296/unified-cpugpu-memory-architecture-raises-the-performance-bar
https://www.electronicdesign.com/technologies/microcontrollers/article/21796296/unified-cpugpu-memory-architecture-raises-the-performance-bar
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://doi.org/10.1109/HPCA.2016.7446077

G10: Enabling An Efficient Unified GPU Memory and Storage Architecture with Smart Tensor Migrations MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

A ARTIFACT APPENDIX
A.1 Abstract
We implement G10 by building our own simulation framework
described in (§5). In this artifact, we provide the source code of G10
and necessary instructions to reproduce key performance results
(Figure 2-4 in §3 and Figure 11-19 in §7).

The artifact can be executed on any x86 machine with at least 30
GB of main memory and at least 120 GB of disk space. We strongly
recommend running the artifact on a workstation with multi-cores
and at least 128 GB memory.

A.2 Artifact Checklist (Meta-Information)
• Algorithm: Tensor Vitality Analysis and Smart Tensor Migration Sched-
uling Algorithm.
• Compilation: GCC 9.4.0 or newer versions.
• Neural Network Models: BERT, ViT, ResNet, Inceptionv3, SENet. Their
traces are included in the repo.
• Run-time environment: Ubuntu 18.04 or newer versions.
• Metrics: Execution time, training throughput, and migration traffic.
• Output: Files and graphs, expected results included in the repo.
• Experiments: Generate experiments using supplied scripts.
• How much disk space required (approximately): 120 GB
• How much time is needed to prepare workflow (approximately):
10 mins
• How much time is needed to complete experiments (approxi-
mately): 20 hours on a server with 256 GB main memory.
• Publicly available: Yes
• Archived (provide DOI): 10.5281/zenodo.8294395

A.3 Description
A.3.1 How to Access. The source code can be downloaded from
Zenodo at https://doi.org/10.5281/zenodo.8294395. For the latest
version, you can access our GitHub repository: https://github.com/
platformxlab/G10.git.

A.3.2 Hardware Dependencies. The artifact can be executed on
any x86 machine with at least 30 GB of main memory and at least
120 GB of disk space.

A.3.3 Software Dependencies. The artifact needs a Linux environ-
ment (preferably Ubuntu) with C++ 14 standard compilation sup-
ported.

A.4 Installation
(1) Start by downloading the G10 artifact from Zenodo:

G10: Enabling An Efficient Unified GPU Memory and Storage Architecture with Smart Tensor Migrations MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

A ARTIFACT APPENDIX
A.1 Abstract
We implement G10 by building our own simulation framework
described in (§5). In this artifact, we provide the source code of G10
and necessary instructions to reproduce key performance results
(Figure 2-4 in §3 and Figure 11-19 in §7).

The artifact can be executed on any x86 machine with at least 30
GB of main memory and at least 120 GB of disk space. We strongly
recommend running the artifact on a workstation with multi-cores
and at least 128 GB memory.

A.2 Description
A.2.1 How to Access. The source code can be downloaded from
Zenodo at https://doi.org/10.5281/zenodo.8294395. For the latest
version, you can access our GitHub repository: https://github.com/
platformxlab/G10.git.

A.2.2 Hardware Dependencies. The artifact can be executed on
any x86 machine with at least 30 GB of main memory and at least
120 GB of disk space.

A.2.3 Software Dependencies. The artifact needs a Linux environ-
ment (preferably Ubuntu) with C++ 14 standard compilation sup-
ported.

A.3 Installation
(1) Start by downloading the G10 artifact from Zenodo:

1 wget https://zenodo.org/record/8294395/files/G10-Artifact.tar.gz
2 tar -xvf G10-Artifact.tar.gz

(2) Please make sure all prerequisites are successfully installed:

1 sudo apt install flex bison tmux python3-pip
2 pip3 install matplotlib networkx pandas PyPDF2

(3) Build G10 (the output executable is named gpg):

1 cd G10-Artifact/src
2 make clean && make

A.4 Experiment Workflow
This section describes the steps to generate and run the neces-
sary experiments. We strongly recommend readers to follow "re-
sources/README.md" to understand more about each script used
in this section.

A.4.1 Generating Configurations. The first step is to generate ap-
propriate config files. In this artifact, we provide the Python script
"resources/genconfigs.py" to generate all the config files used in this
artifact (in configs/ directory).

1 python3 resources/genconfigs.py

A.4.2 Launching A Single Experiment. Every configuration file
specifies the DNN model and the batch size to be used, as well
as other system configuration parameters (such as GPU memory

size, SSD Bandwidth, the baseline type, and so on). All the DNN
model graph information and their execution traces are already
included if users use the configs generated by the "resources/gen-
configs.py" script.

To run a single experiment, directly find its corresponding config
file and use ((use G10-(BERT, batchsize=256)) as an example):

1 ./gpg "$relative_path_to_config_file"
2 # e.g., ./gpg configs/BERT/256-sim_prefetch_lru.config

The program will execute the Tensor Vitality Analysis and Smart
Tensor Migration Algorithms, and do a performance simulation
of the DNN training. The results will be placed under the G10-
Artifact/results directory.

For each experiment, G10 will generate separate logs for ana-
lyzed DNN graph information, tensor vitality analysis results, smart
tensor migration scheduling, and performance simulation results.

See "G10-Artifact/results/README.md" for more details of the
experiment output.

A.4.3 Launching Batched Experiments. To run a large number of
experiments at one time, we provide the "resources/run.sh" Shell
script. It can use regular expressions to match multiple config files,
and it will automatically spawn different experiments to multiple
tmux windows for parallel execution.

To evaluate all the experiments more conveniently, we provide a
Shell script, "artifact_run.sh", which will be introduced in the next
section. To run individual experiments corresponding to the figures
in the paper, see lines 23-45 of "artifact_run.sh":

1 # First run experiments for figure 11-14
2 ./run.sh -p "(BERT\/256|VIT\/1280|Inceptionv3\/1536|
3 ResNet152\/1280|SENet154\/1024)-sim_
4 (deepUM|prefetch_lru|FlashNeuron|G10GDSSSD|G10GDSFULL|lru)
5 \.config"
6 -dr -j $MAX_PROCESS_NUM
7
8 # Then run experiments for figure 15
9 ./run.sh -p "(BERT\/(128|256|512|768|1024)|
10 VIT\/(256|512|768|1024|1280)|
11 Inceptionv3\/(512|768|1024|1280|1536|1792)|
12 ResNet152\/(256|512|768|1024|1280)|
13 SENet154\/(256|512|768|1024))
14 -sim_(deepUM|prefetch_lru|FlashNeuron|lru)\.config"
15 -dr -j $MAX_PROCESS_NUM
16
17 # Then run experiments for figure 16
18 ./run.sh -p "(BERT\/(256|384|512|640)|
19 VIT\/(768|1024|1280|1536)|
20 Inceptionv3\/(512|1024|1280|1536)|
21 ResNet152\/(768|1024|1280|1536)|
22 SENet154\/(256|512|768|1024))
23 -sim_prefetch_lru
24 (-cpu(0|16|32|64|96|192|256))?\.config"
25 -dr -j $MAX_PROCESS_NUM
26
27 # Then run experiments for figure 17
28 ./run.sh -p "(VIT\/1024|Inceptionv3\/1280)
29 -sim_(deepUM|prefetch_lru|FlashNeuron)
30 -cpu(0|16|32|64|256)\.config"
31 -dr -j $MAX_PROCESS_NUM
32
33 # Then run experiments for figure 18
34 ./run.sh -p "(BERT\/512|VIT\/1280|Inceptionv3\/1536|
35 ResNet152\/1280|SENet154\/1024)
36 -sim_(deepUM|prefetch_lru|FlashNeuron|lru)
37 -ssd(6_4|12_8|19_2|25_6|32)-.*\.config"
38 -dr -j $MAX_PROCESS_NUM
39
40 # Then run experiments for figure 19
41 ./run.sh -p "(BERT\/256|VIT\/1280|Inceptionv3\/1536|
42 ResNet152\/1280|SENet154\/1024)
43 -sim_prefetch_lru-var0_(05|10|15|20|25)\.config"
44 -dr -j $MAX_PROCESS_NUM

(2) Please make sure all prerequisites are successfully installed:

G10: Enabling An Efficient Unified GPU Memory and Storage Architecture with Smart Tensor Migrations MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

A ARTIFACT APPENDIX
A.1 Abstract
We implement G10 by building our own simulation framework
described in (§5). In this artifact, we provide the source code of G10
and necessary instructions to reproduce key performance results
(Figure 2-4 in §3 and Figure 11-19 in §7).

The artifact can be executed on any x86 machine with at least 30
GB of main memory and at least 120 GB of disk space. We strongly
recommend running the artifact on a workstation with multi-cores
and at least 128 GB memory.

A.2 Description
A.2.1 How to Access. The source code can be downloaded from
Zenodo at https://doi.org/10.5281/zenodo.8294395. For the latest
version, you can access our GitHub repository: https://github.com/
platformxlab/G10.git.

A.2.2 Hardware Dependencies. The artifact can be executed on
any x86 machine with at least 30 GB of main memory and at least
120 GB of disk space.

A.2.3 Software Dependencies. The artifact needs a Linux environ-
ment (preferably Ubuntu) with C++ 14 standard compilation sup-
ported.

A.3 Installation
(1) Start by downloading the G10 artifact from Zenodo:

1 wget https://zenodo.org/record/8294395/files/G10-Artifact.tar.gz
2 tar -xvf G10-Artifact.tar.gz

(2) Please make sure all prerequisites are successfully installed:

1 sudo apt install flex bison tmux python3-pip
2 pip3 install matplotlib networkx pandas PyPDF2

(3) Build G10 (the output executable is named gpg):

1 cd G10-Artifact/src
2 make clean && make

A.4 Experiment Workflow
This section describes the steps to generate and run the neces-
sary experiments. We strongly recommend readers to follow "re-
sources/README.md" to understand more about each script used
in this section.

A.4.1 Generating Configurations. The first step is to generate ap-
propriate config files. In this artifact, we provide the Python script
"resources/genconfigs.py" to generate all the config files used in this
artifact (in configs/ directory).

1 python3 resources/genconfigs.py

A.4.2 Launching A Single Experiment. Every configuration file
specifies the DNN model and the batch size to be used, as well
as other system configuration parameters (such as GPU memory

size, SSD Bandwidth, the baseline type, and so on). All the DNN
model graph information and their execution traces are already
included if users use the configs generated by the "resources/gen-
configs.py" script.

To run a single experiment, directly find its corresponding config
file and use ((use G10-(BERT, batchsize=256)) as an example):

1 ./gpg "$relative_path_to_config_file"
2 # e.g., ./gpg configs/BERT/256-sim_prefetch_lru.config

The program will execute the Tensor Vitality Analysis and Smart
Tensor Migration Algorithms, and do a performance simulation
of the DNN training. The results will be placed under the G10-
Artifact/results directory.

For each experiment, G10 will generate separate logs for ana-
lyzed DNN graph information, tensor vitality analysis results, smart
tensor migration scheduling, and performance simulation results.

See "G10-Artifact/results/README.md" for more details of the
experiment output.

A.4.3 Launching Batched Experiments. To run a large number of
experiments at one time, we provide the "resources/run.sh" Shell
script. It can use regular expressions to match multiple config files,
and it will automatically spawn different experiments to multiple
tmux windows for parallel execution.

To evaluate all the experiments more conveniently, we provide a
Shell script, "artifact_run.sh", which will be introduced in the next
section. To run individual experiments corresponding to the figures
in the paper, see lines 23-45 of "artifact_run.sh":

1 # First run experiments for figure 11-14
2 ./run.sh -p "(BERT\/256|VIT\/1280|Inceptionv3\/1536|
3 ResNet152\/1280|SENet154\/1024)-sim_
4 (deepUM|prefetch_lru|FlashNeuron|G10GDSSSD|G10GDSFULL|lru)
5 \.config"
6 -dr -j $MAX_PROCESS_NUM
7
8 # Then run experiments for figure 15
9 ./run.sh -p "(BERT\/(128|256|512|768|1024)|
10 VIT\/(256|512|768|1024|1280)|
11 Inceptionv3\/(512|768|1024|1280|1536|1792)|
12 ResNet152\/(256|512|768|1024|1280)|
13 SENet154\/(256|512|768|1024))
14 -sim_(deepUM|prefetch_lru|FlashNeuron|lru)\.config"
15 -dr -j $MAX_PROCESS_NUM
16
17 # Then run experiments for figure 16
18 ./run.sh -p "(BERT\/(256|384|512|640)|
19 VIT\/(768|1024|1280|1536)|
20 Inceptionv3\/(512|1024|1280|1536)|
21 ResNet152\/(768|1024|1280|1536)|
22 SENet154\/(256|512|768|1024))
23 -sim_prefetch_lru
24 (-cpu(0|16|32|64|96|192|256))?\.config"
25 -dr -j $MAX_PROCESS_NUM
26
27 # Then run experiments for figure 17
28 ./run.sh -p "(VIT\/1024|Inceptionv3\/1280)
29 -sim_(deepUM|prefetch_lru|FlashNeuron)
30 -cpu(0|16|32|64|256)\.config"
31 -dr -j $MAX_PROCESS_NUM
32
33 # Then run experiments for figure 18
34 ./run.sh -p "(BERT\/512|VIT\/1280|Inceptionv3\/1536|
35 ResNet152\/1280|SENet154\/1024)
36 -sim_(deepUM|prefetch_lru|FlashNeuron|lru)
37 -ssd(6_4|12_8|19_2|25_6|32)-.*\.config"
38 -dr -j $MAX_PROCESS_NUM
39
40 # Then run experiments for figure 19
41 ./run.sh -p "(BERT\/256|VIT\/1280|Inceptionv3\/1536|
42 ResNet152\/1280|SENet154\/1024)
43 -sim_prefetch_lru-var0_(05|10|15|20|25)\.config"
44 -dr -j $MAX_PROCESS_NUM

(3) Build G10 (the output executable is named gpg):

G10: Enabling An Efficient Unified GPU Memory and Storage Architecture with Smart Tensor Migrations MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

A ARTIFACT APPENDIX
A.1 Abstract
We implement G10 by building our own simulation framework
described in (§5). In this artifact, we provide the source code of G10
and necessary instructions to reproduce key performance results
(Figure 2-4 in §3 and Figure 11-19 in §7).

The artifact can be executed on any x86 machine with at least 30
GB of main memory and at least 120 GB of disk space. We strongly
recommend running the artifact on a workstation with multi-cores
and at least 128 GB memory.

A.2 Description
A.2.1 How to Access. The source code can be downloaded from
Zenodo at https://doi.org/10.5281/zenodo.8294395. For the latest
version, you can access our GitHub repository: https://github.com/
platformxlab/G10.git.

A.2.2 Hardware Dependencies. The artifact can be executed on
any x86 machine with at least 30 GB of main memory and at least
120 GB of disk space.

A.2.3 Software Dependencies. The artifact needs a Linux environ-
ment (preferably Ubuntu) with C++ 14 standard compilation sup-
ported.

A.3 Installation
(1) Start by downloading the G10 artifact from Zenodo:

1 wget https://zenodo.org/record/8294395/files/G10-Artifact.tar.gz
2 tar -xvf G10-Artifact.tar.gz

(2) Please make sure all prerequisites are successfully installed:

1 sudo apt install flex bison tmux python3-pip
2 pip3 install matplotlib networkx pandas PyPDF2

(3) Build G10 (the output executable is named gpg):

1 cd G10-Artifact/src
2 make clean && make

A.4 Experiment Workflow
This section describes the steps to generate and run the neces-
sary experiments. We strongly recommend readers to follow "re-
sources/README.md" to understand more about each script used
in this section.

A.4.1 Generating Configurations. The first step is to generate ap-
propriate config files. In this artifact, we provide the Python script
"resources/genconfigs.py" to generate all the config files used in this
artifact (in configs/ directory).

1 python3 resources/genconfigs.py

A.4.2 Launching A Single Experiment. Every configuration file
specifies the DNN model and the batch size to be used, as well
as other system configuration parameters (such as GPU memory

size, SSD Bandwidth, the baseline type, and so on). All the DNN
model graph information and their execution traces are already
included if users use the configs generated by the "resources/gen-
configs.py" script.

To run a single experiment, directly find its corresponding config
file and use ((use G10-(BERT, batchsize=256)) as an example):

1 ./gpg "$relative_path_to_config_file"
2 # e.g., ./gpg configs/BERT/256-sim_prefetch_lru.config

The program will execute the Tensor Vitality Analysis and Smart
Tensor Migration Algorithms, and do a performance simulation
of the DNN training. The results will be placed under the G10-
Artifact/results directory.

For each experiment, G10 will generate separate logs for ana-
lyzed DNN graph information, tensor vitality analysis results, smart
tensor migration scheduling, and performance simulation results.

See "G10-Artifact/results/README.md" for more details of the
experiment output.

A.4.3 Launching Batched Experiments. To run a large number of
experiments at one time, we provide the "resources/run.sh" Shell
script. It can use regular expressions to match multiple config files,
and it will automatically spawn different experiments to multiple
tmux windows for parallel execution.

To evaluate all the experiments more conveniently, we provide a
Shell script, "artifact_run.sh", which will be introduced in the next
section. To run individual experiments corresponding to the figures
in the paper, see lines 23-45 of "artifact_run.sh":

1 # First run experiments for figure 11-14
2 ./run.sh -p "(BERT\/256|VIT\/1280|Inceptionv3\/1536|
3 ResNet152\/1280|SENet154\/1024)-sim_
4 (deepUM|prefetch_lru|FlashNeuron|G10GDSSSD|G10GDSFULL|lru)
5 \.config"
6 -dr -j $MAX_PROCESS_NUM
7
8 # Then run experiments for figure 15
9 ./run.sh -p "(BERT\/(128|256|512|768|1024)|
10 VIT\/(256|512|768|1024|1280)|
11 Inceptionv3\/(512|768|1024|1280|1536|1792)|
12 ResNet152\/(256|512|768|1024|1280)|
13 SENet154\/(256|512|768|1024))
14 -sim_(deepUM|prefetch_lru|FlashNeuron|lru)\.config"
15 -dr -j $MAX_PROCESS_NUM
16
17 # Then run experiments for figure 16
18 ./run.sh -p "(BERT\/(256|384|512|640)|
19 VIT\/(768|1024|1280|1536)|
20 Inceptionv3\/(512|1024|1280|1536)|
21 ResNet152\/(768|1024|1280|1536)|
22 SENet154\/(256|512|768|1024))
23 -sim_prefetch_lru
24 (-cpu(0|16|32|64|96|192|256))?\.config"
25 -dr -j $MAX_PROCESS_NUM
26
27 # Then run experiments for figure 17
28 ./run.sh -p "(VIT\/1024|Inceptionv3\/1280)
29 -sim_(deepUM|prefetch_lru|FlashNeuron)
30 -cpu(0|16|32|64|256)\.config"
31 -dr -j $MAX_PROCESS_NUM
32
33 # Then run experiments for figure 18
34 ./run.sh -p "(BERT\/512|VIT\/1280|Inceptionv3\/1536|
35 ResNet152\/1280|SENet154\/1024)
36 -sim_(deepUM|prefetch_lru|FlashNeuron|lru)
37 -ssd(6_4|12_8|19_2|25_6|32)-.*\.config"
38 -dr -j $MAX_PROCESS_NUM
39
40 # Then run experiments for figure 19
41 ./run.sh -p "(BERT\/256|VIT\/1280|Inceptionv3\/1536|
42 ResNet152\/1280|SENet154\/1024)
43 -sim_prefetch_lru-var0_(05|10|15|20|25)\.config"
44 -dr -j $MAX_PROCESS_NUM

A.5 Experiment Workflow
This section describes the steps to generate and run the neces-
sary experiments. We strongly recommend readers to follow "re-
sources/README.md" to understand more about each script used
in this section.

A.5.1 Generating Configurations. The first step is to generate ap-
propriate config files. In this artifact, we provide the Python script
"resources/genconfigs.py" to generate all the config files used in this
artifact (in configs/ directory).

G10: Enabling An Efficient Unified GPU Memory and Storage Architecture with Smart Tensor Migrations MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

A ARTIFACT APPENDIX
A.1 Abstract
We implement G10 by building our own simulation framework
described in (§5). In this artifact, we provide the source code of G10
and necessary instructions to reproduce key performance results
(Figure 2-4 in §3 and Figure 11-19 in §7).

The artifact can be executed on any x86 machine with at least 30
GB of main memory and at least 120 GB of disk space. We strongly
recommend running the artifact on a workstation with multi-cores
and at least 128 GB memory.

A.2 Description
A.2.1 How to Access. The source code can be downloaded from
Zenodo at https://doi.org/10.5281/zenodo.8294395. For the latest
version, you can access our GitHub repository: https://github.com/
platformxlab/G10.git.

A.2.2 Hardware Dependencies. The artifact can be executed on
any x86 machine with at least 30 GB of main memory and at least
120 GB of disk space.

A.2.3 Software Dependencies. The artifact needs a Linux environ-
ment (preferably Ubuntu) with C++ 14 standard compilation sup-
ported.

A.3 Installation
(1) Start by downloading the G10 artifact from Zenodo:

1 wget https://zenodo.org/record/8294395/files/G10-Artifact.tar.gz
2 tar -xvf G10-Artifact.tar.gz

(2) Please make sure all prerequisites are successfully installed:

1 sudo apt install flex bison tmux python3-pip
2 pip3 install matplotlib networkx pandas PyPDF2

(3) Build G10 (the output executable is named gpg):

1 cd G10-Artifact/src
2 make clean && make

A.4 Experiment Workflow
This section describes the steps to generate and run the neces-
sary experiments. We strongly recommend readers to follow "re-
sources/README.md" to understand more about each script used
in this section.

A.4.1 Generating Configurations. The first step is to generate ap-
propriate config files. In this artifact, we provide the Python script
"resources/genconfigs.py" to generate all the config files used in this
artifact (in configs/ directory).

1 python3 resources/genconfigs.py

A.4.2 Launching A Single Experiment. Every configuration file
specifies the DNN model and the batch size to be used, as well
as other system configuration parameters (such as GPU memory

size, SSD Bandwidth, the baseline type, and so on). All the DNN
model graph information and their execution traces are already
included if users use the configs generated by the "resources/gen-
configs.py" script.

To run a single experiment, directly find its corresponding config
file and use ((use G10-(BERT, batchsize=256)) as an example):

1 ./gpg "$relative_path_to_config_file"
2 # e.g., ./gpg configs/BERT/256-sim_prefetch_lru.config

The program will execute the Tensor Vitality Analysis and Smart
Tensor Migration Algorithms, and do a performance simulation
of the DNN training. The results will be placed under the G10-
Artifact/results directory.

For each experiment, G10 will generate separate logs for ana-
lyzed DNN graph information, tensor vitality analysis results, smart
tensor migration scheduling, and performance simulation results.

See "G10-Artifact/results/README.md" for more details of the
experiment output.

A.4.3 Launching Batched Experiments. To run a large number of
experiments at one time, we provide the "resources/run.sh" Shell
script. It can use regular expressions to match multiple config files,
and it will automatically spawn different experiments to multiple
tmux windows for parallel execution.

To evaluate all the experiments more conveniently, we provide a
Shell script, "artifact_run.sh", which will be introduced in the next
section. To run individual experiments corresponding to the figures
in the paper, see lines 23-45 of "artifact_run.sh":

1 # First run experiments for figure 11-14
2 ./run.sh -p "(BERT\/256|VIT\/1280|Inceptionv3\/1536|
3 ResNet152\/1280|SENet154\/1024)-sim_
4 (deepUM|prefetch_lru|FlashNeuron|G10GDSSSD|G10GDSFULL|lru)
5 \.config"
6 -dr -j $MAX_PROCESS_NUM
7
8 # Then run experiments for figure 15
9 ./run.sh -p "(BERT\/(128|256|512|768|1024)|
10 VIT\/(256|512|768|1024|1280)|
11 Inceptionv3\/(512|768|1024|1280|1536|1792)|
12 ResNet152\/(256|512|768|1024|1280)|
13 SENet154\/(256|512|768|1024))
14 -sim_(deepUM|prefetch_lru|FlashNeuron|lru)\.config"
15 -dr -j $MAX_PROCESS_NUM
16
17 # Then run experiments for figure 16
18 ./run.sh -p "(BERT\/(256|384|512|640)|
19 VIT\/(768|1024|1280|1536)|
20 Inceptionv3\/(512|1024|1280|1536)|
21 ResNet152\/(768|1024|1280|1536)|
22 SENet154\/(256|512|768|1024))
23 -sim_prefetch_lru
24 (-cpu(0|16|32|64|96|192|256))?\.config"
25 -dr -j $MAX_PROCESS_NUM
26
27 # Then run experiments for figure 17
28 ./run.sh -p "(VIT\/1024|Inceptionv3\/1280)
29 -sim_(deepUM|prefetch_lru|FlashNeuron)
30 -cpu(0|16|32|64|256)\.config"
31 -dr -j $MAX_PROCESS_NUM
32
33 # Then run experiments for figure 18
34 ./run.sh -p "(BERT\/512|VIT\/1280|Inceptionv3\/1536|
35 ResNet152\/1280|SENet154\/1024)
36 -sim_(deepUM|prefetch_lru|FlashNeuron|lru)
37 -ssd(6_4|12_8|19_2|25_6|32)-.*\.config"
38 -dr -j $MAX_PROCESS_NUM
39
40 # Then run experiments for figure 19
41 ./run.sh -p "(BERT\/256|VIT\/1280|Inceptionv3\/1536|
42 ResNet152\/1280|SENet154\/1024)
43 -sim_prefetch_lru-var0_(05|10|15|20|25)\.config"
44 -dr -j $MAX_PROCESS_NUM

A.5.2 Launching A Single Experiment. Every configuration file
specifies the DNN model and the batch size to be used, as well
as other system configuration parameters (such as GPU memory
size, SSD Bandwidth, the baseline type, and so on). All the DNN
model graph information and their execution traces are already
included if users use the configs generated by the "resources/gen-
configs.py" script.

To run a single experiment, directly find its corresponding config
file and use ((use G10-(BERT, batchsize=256)) as an example):

G10: Enabling An Efficient Unified GPU Memory and Storage Architecture with Smart Tensor Migrations MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

A ARTIFACT APPENDIX
A.1 Abstract
We implement G10 by building our own simulation framework
described in (§5). In this artifact, we provide the source code of G10
and necessary instructions to reproduce key performance results
(Figure 2-4 in §3 and Figure 11-19 in §7).

The artifact can be executed on any x86 machine with at least 30
GB of main memory and at least 120 GB of disk space. We strongly
recommend running the artifact on a workstation with multi-cores
and at least 128 GB memory.

A.2 Description
A.2.1 How to Access. The source code can be downloaded from
Zenodo at https://doi.org/10.5281/zenodo.8294395. For the latest
version, you can access our GitHub repository: https://github.com/
platformxlab/G10.git.

A.2.2 Hardware Dependencies. The artifact can be executed on
any x86 machine with at least 30 GB of main memory and at least
120 GB of disk space.

A.2.3 Software Dependencies. The artifact needs a Linux environ-
ment (preferably Ubuntu) with C++ 14 standard compilation sup-
ported.

A.3 Installation
(1) Start by downloading the G10 artifact from Zenodo:

1 wget https://zenodo.org/record/8294395/files/G10-Artifact.tar.gz
2 tar -xvf G10-Artifact.tar.gz

(2) Please make sure all prerequisites are successfully installed:

1 sudo apt install flex bison tmux python3-pip
2 pip3 install matplotlib networkx pandas PyPDF2

(3) Build G10 (the output executable is named gpg):

1 cd G10-Artifact/src
2 make clean && make

A.4 Experiment Workflow
This section describes the steps to generate and run the neces-
sary experiments. We strongly recommend readers to follow "re-
sources/README.md" to understand more about each script used
in this section.

A.4.1 Generating Configurations. The first step is to generate ap-
propriate config files. In this artifact, we provide the Python script
"resources/genconfigs.py" to generate all the config files used in this
artifact (in configs/ directory).

1 python3 resources/genconfigs.py

A.4.2 Launching A Single Experiment. Every configuration file
specifies the DNN model and the batch size to be used, as well
as other system configuration parameters (such as GPU memory

size, SSD Bandwidth, the baseline type, and so on). All the DNN
model graph information and their execution traces are already
included if users use the configs generated by the "resources/gen-
configs.py" script.

To run a single experiment, directly find its corresponding config
file and use ((use G10-(BERT, batchsize=256)) as an example):

1 ./gpg "$relative_path_to_config_file"
2 # e.g., ./gpg configs/BERT/256-sim_prefetch_lru.config

The program will execute the Tensor Vitality Analysis and Smart
Tensor Migration Algorithms, and do a performance simulation
of the DNN training. The results will be placed under the G10-
Artifact/results directory.

For each experiment, G10 will generate separate logs for ana-
lyzed DNN graph information, tensor vitality analysis results, smart
tensor migration scheduling, and performance simulation results.

See "G10-Artifact/results/README.md" for more details of the
experiment output.

A.4.3 Launching Batched Experiments. To run a large number of
experiments at one time, we provide the "resources/run.sh" Shell
script. It can use regular expressions to match multiple config files,
and it will automatically spawn different experiments to multiple
tmux windows for parallel execution.

To evaluate all the experiments more conveniently, we provide a
Shell script, "artifact_run.sh", which will be introduced in the next
section. To run individual experiments corresponding to the figures
in the paper, see lines 23-45 of "artifact_run.sh":

1 # First run experiments for figure 11-14
2 ./run.sh -p "(BERT\/256|VIT\/1280|Inceptionv3\/1536|
3 ResNet152\/1280|SENet154\/1024)-sim_
4 (deepUM|prefetch_lru|FlashNeuron|G10GDSSSD|G10GDSFULL|lru)
5 \.config"
6 -dr -j $MAX_PROCESS_NUM
7
8 # Then run experiments for figure 15
9 ./run.sh -p "(BERT\/(128|256|512|768|1024)|
10 VIT\/(256|512|768|1024|1280)|
11 Inceptionv3\/(512|768|1024|1280|1536|1792)|
12 ResNet152\/(256|512|768|1024|1280)|
13 SENet154\/(256|512|768|1024))
14 -sim_(deepUM|prefetch_lru|FlashNeuron|lru)\.config"
15 -dr -j $MAX_PROCESS_NUM
16
17 # Then run experiments for figure 16
18 ./run.sh -p "(BERT\/(256|384|512|640)|
19 VIT\/(768|1024|1280|1536)|
20 Inceptionv3\/(512|1024|1280|1536)|
21 ResNet152\/(768|1024|1280|1536)|
22 SENet154\/(256|512|768|1024))
23 -sim_prefetch_lru
24 (-cpu(0|16|32|64|96|192|256))?\.config"
25 -dr -j $MAX_PROCESS_NUM
26
27 # Then run experiments for figure 17
28 ./run.sh -p "(VIT\/1024|Inceptionv3\/1280)
29 -sim_(deepUM|prefetch_lru|FlashNeuron)
30 -cpu(0|16|32|64|256)\.config"
31 -dr -j $MAX_PROCESS_NUM
32
33 # Then run experiments for figure 18
34 ./run.sh -p "(BERT\/512|VIT\/1280|Inceptionv3\/1536|
35 ResNet152\/1280|SENet154\/1024)
36 -sim_(deepUM|prefetch_lru|FlashNeuron|lru)
37 -ssd(6_4|12_8|19_2|25_6|32)-.*\.config"
38 -dr -j $MAX_PROCESS_NUM
39
40 # Then run experiments for figure 19
41 ./run.sh -p "(BERT\/256|VIT\/1280|Inceptionv3\/1536|
42 ResNet152\/1280|SENet154\/1024)
43 -sim_prefetch_lru-var0_(05|10|15|20|25)\.config"
44 -dr -j $MAX_PROCESS_NUM

The program will execute the Tensor Vitality Analysis and Smart
Tensor Migration Algorithms, and do a performance simulation
of the DNN training. The results will be placed under the G10-
Artifact/results directory.

For each experiment, G10 will generate separate logs for ana-
lyzed DNN graph information, tensor vitality analysis results, smart
tensor migration scheduling, and performance simulation results.

See "G10-Artifact/results/README.md" for more details of the
experiment output.

A.5.3 Launching Batched Experiments. To run a large number of
experiments at one time, we provide the "resources/run.sh" Shell
script. It can use regular expressions to match multiple config files,
and it will automatically spawn different experiments to multiple
tmux windows for parallel execution.

To evaluate all the experiments more conveniently, we provide a
Shell script, "artifact_run.sh", which will be introduced in the next
section. To run individual experiments corresponding to the figures
in the paper, see lines 23-45 of "artifact_run.sh":

https://doi.org/10.5281/zenodo.8294395
https://github.com/platformxlab/G10.git
https://github.com/platformxlab/G10.git

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Haoyang Zhang, Yirui Eric Zhou, Yuqi Xue, Yiqi Liu, and Jian Huang

G10: Enabling An Efficient Unified GPU Memory and Storage Architecture with Smart Tensor Migrations MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

A ARTIFACT APPENDIX
A.1 Abstract
We implement G10 by building our own simulation framework
described in (§5). In this artifact, we provide the source code of G10
and necessary instructions to reproduce key performance results
(Figure 2-4 in §3 and Figure 11-19 in §7).

The artifact can be executed on any x86 machine with at least 30
GB of main memory and at least 120 GB of disk space. We strongly
recommend running the artifact on a workstation with multi-cores
and at least 128 GB memory.

A.2 Description
A.2.1 How to Access. The source code can be downloaded from
Zenodo at https://doi.org/10.5281/zenodo.8294395. For the latest
version, you can access our GitHub repository: https://github.com/
platformxlab/G10.git.

A.2.2 Hardware Dependencies. The artifact can be executed on
any x86 machine with at least 30 GB of main memory and at least
120 GB of disk space.

A.2.3 Software Dependencies. The artifact needs a Linux environ-
ment (preferably Ubuntu) with C++ 14 standard compilation sup-
ported.

A.3 Installation
(1) Start by downloading the G10 artifact from Zenodo:

1 wget https://zenodo.org/record/8294395/files/G10-Artifact.tar.gz
2 tar -xvf G10-Artifact.tar.gz

(2) Please make sure all prerequisites are successfully installed:

1 sudo apt install flex bison tmux python3-pip
2 pip3 install matplotlib networkx pandas PyPDF2

(3) Build G10 (the output executable is named gpg):

1 cd G10-Artifact/src
2 make clean && make

A.4 Experiment Workflow
This section describes the steps to generate and run the neces-
sary experiments. We strongly recommend readers to follow "re-
sources/README.md" to understand more about each script used
in this section.

A.4.1 Generating Configurations. The first step is to generate ap-
propriate config files. In this artifact, we provide the Python script
"resources/genconfigs.py" to generate all the config files used in this
artifact (in configs/ directory).

1 python3 resources/genconfigs.py

A.4.2 Launching A Single Experiment. Every configuration file
specifies the DNN model and the batch size to be used, as well
as other system configuration parameters (such as GPU memory

size, SSD Bandwidth, the baseline type, and so on). All the DNN
model graph information and their execution traces are already
included if users use the configs generated by the "resources/gen-
configs.py" script.

To run a single experiment, directly find its corresponding config
file and use ((use G10-(BERT, batchsize=256)) as an example):

1 ./gpg "$relative_path_to_config_file"
2 # e.g., ./gpg configs/BERT/256-sim_prefetch_lru.config

The program will execute the Tensor Vitality Analysis and Smart
Tensor Migration Algorithms, and do a performance simulation
of the DNN training. The results will be placed under the G10-
Artifact/results directory.

For each experiment, G10 will generate separate logs for ana-
lyzed DNN graph information, tensor vitality analysis results, smart
tensor migration scheduling, and performance simulation results.

See "G10-Artifact/results/README.md" for more details of the
experiment output.

A.4.3 Launching Batched Experiments. To run a large number of
experiments at one time, we provide the "resources/run.sh" Shell
script. It can use regular expressions to match multiple config files,
and it will automatically spawn different experiments to multiple
tmux windows for parallel execution.

To evaluate all the experiments more conveniently, we provide a
Shell script, "artifact_run.sh", which will be introduced in the next
section. To run individual experiments corresponding to the figures
in the paper, see lines 23-45 of "artifact_run.sh":

1 # First run experiments for figure 11-14
2 ./run.sh -p "(BERT\/256|VIT\/1280|Inceptionv3\/1536|
3 ResNet152\/1280|SENet154\/1024)-sim_
4 (deepUM|prefetch_lru|FlashNeuron|G10GDSSSD|G10GDSFULL|lru)
5 \.config"
6 -dr -j $MAX_PROCESS_NUM
7
8 # Then run experiments for figure 15
9 ./run.sh -p "(BERT\/(128|256|512|768|1024)|
10 VIT\/(256|512|768|1024|1280)|
11 Inceptionv3\/(512|768|1024|1280|1536|1792)|
12 ResNet152\/(256|512|768|1024|1280)|
13 SENet154\/(256|512|768|1024))
14 -sim_(deepUM|prefetch_lru|FlashNeuron|lru)\.config"
15 -dr -j $MAX_PROCESS_NUM
16
17 # Then run experiments for figure 16
18 ./run.sh -p "(BERT\/(256|384|512|640)|
19 VIT\/(768|1024|1280|1536)|
20 Inceptionv3\/(512|1024|1280|1536)|
21 ResNet152\/(768|1024|1280|1536)|
22 SENet154\/(256|512|768|1024))
23 -sim_prefetch_lru
24 (-cpu(0|16|32|64|96|192|256))?\.config"
25 -dr -j $MAX_PROCESS_NUM
26
27 # Then run experiments for figure 17
28 ./run.sh -p "(VIT\/1024|Inceptionv3\/1280)
29 -sim_(deepUM|prefetch_lru|FlashNeuron)
30 -cpu(0|16|32|64|256)\.config"
31 -dr -j $MAX_PROCESS_NUM
32
33 # Then run experiments for figure 18
34 ./run.sh -p "(BERT\/512|VIT\/1280|Inceptionv3\/1536|
35 ResNet152\/1280|SENet154\/1024)
36 -sim_(deepUM|prefetch_lru|FlashNeuron|lru)
37 -ssd(6_4|12_8|19_2|25_6|32)-.*\.config"
38 -dr -j $MAX_PROCESS_NUM
39
40 # Then run experiments for figure 19
41 ./run.sh -p "(BERT\/256|VIT\/1280|Inceptionv3\/1536|
42 ResNet152\/1280|SENet154\/1024)
43 -sim_prefetch_lru-var0_(05|10|15|20|25)\.config"
44 -dr -j $MAX_PROCESS_NUM

A.6 Evaluation and Expected Results
To evaluate the artifact results, simply run:

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Haoyang Zhang, Yirui Eric Zhou, Yuqi Xue, Yiqi Liu, and Jian Huang

A.5 Evaluation and Expected Results
To evaluate the artifact results, simply run:

1 ./artifact_run.sh

This script runs all the experiments, data gathering, and figure
drawing sequentially. Note that users may have to change the
maximum allowed number of parallel experiments (i.e., the variable
$MAX_PROCESS_NUM) in the script, based on the machine’s main
memory capacity (each process needs a peak memory of about 28.5
GB). A detailed description of each command and the location of
the output figures are also included in the script.

We have provided the expected result files in the directory "G10-
Artifact/example_results". To verify the results, one can compare
the generated figures directly with those in the paper, or compare
the data for each figure with the example results we provided.

A.6 Experiment Customization
A.6.1 Changing Simulation Configurations. In addition to the pro-
vided configurations, users can also customize their own config
files and evaluate them. The simplest way to do this is to modify the
"resources/genconfigs.py" script. Note that we only provided DNN
training execution traces for some specific batch sizes.

A.6.2 Custom DNN Training Profiling. Users can generate their
own traces of DNN training on their own GPUs. Users can also
generate traces for customized batch sizes. Custom profiling can be
done by modifying the config files named "profile" rather than "sim",
and running them with the G10 executable. Note that to do this,
users have to first correctly install CUDA (11.0 and newer version)
tool-kits with cudnn and cublas libraries. Before the custom profil-
ing, please make sure you have built the CUDA code generation
part of our framework:

1 cd G10-Artifact/src/cudnn
2 make clean && make

Note that the profiling may take a long time.

A.7 Methodology
Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/artifact-review-and-
badging-current
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

This script runs all the experiments, data gathering, and figure
drawing sequentially. Note that users may have to change the
maximum allowed number of parallel experiments (i.e., the variable

$MAX_PROCESS_NUM) in the script, based on the machine’s main
memory capacity (each process needs a peak memory of about 28.5
GB). A detailed description of each command and the location of
the output figures are also included in the script.

We have provided the expected result files in the directory "G10-
Artifact/example_results". To verify the results, one can compare
the generated figures directly with those in the paper, or compare
the data for each figure with the example results we provided.

A.7 Experiment Customization
A.7.1 Changing Simulation Configurations. In addition to the pro-
vided configurations, users can also customize their own config
files and evaluate them. The simplest way to do this is to modify the
"resources/genconfigs.py" script. Note that we only provided DNN
training execution traces for some specific batch sizes.

A.7.2 Custom DNN Training Profiling. Users can generate their
own traces of DNN training on their own GPUs. Users can also
generate traces for customized batch sizes. Custom profiling can be
done by modifying the config files named "profile" rather than "sim",
and running them with the G10 executable. Note that to do this,
users have to first correctly install CUDA (11.0 and newer version)
tool-kits with cudnn and cublas libraries. Before the custom profil-
ing, please make sure you have built the CUDA code generation
part of our framework:

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Haoyang Zhang, Yirui Eric Zhou, Yuqi Xue, Yiqi Liu, and Jian Huang

A.5 Evaluation and Expected Results
To evaluate the artifact results, simply run:

1 ./artifact_run.sh

This script runs all the experiments, data gathering, and figure
drawing sequentially. Note that users may have to change the
maximum allowed number of parallel experiments (i.e., the variable
$MAX_PROCESS_NUM) in the script, based on the machine’s main
memory capacity (each process needs a peak memory of about 28.5
GB). A detailed description of each command and the location of
the output figures are also included in the script.

We have provided the expected result files in the directory "G10-
Artifact/example_results". To verify the results, one can compare
the generated figures directly with those in the paper, or compare
the data for each figure with the example results we provided.

A.6 Experiment Customization
A.6.1 Changing Simulation Configurations. In addition to the pro-
vided configurations, users can also customize their own config
files and evaluate them. The simplest way to do this is to modify the
"resources/genconfigs.py" script. Note that we only provided DNN
training execution traces for some specific batch sizes.

A.6.2 Custom DNN Training Profiling. Users can generate their
own traces of DNN training on their own GPUs. Users can also
generate traces for customized batch sizes. Custom profiling can be
done by modifying the config files named "profile" rather than "sim",
and running them with the G10 executable. Note that to do this,
users have to first correctly install CUDA (11.0 and newer version)
tool-kits with cudnn and cublas libraries. Before the custom profil-
ing, please make sure you have built the CUDA code generation
part of our framework:

1 cd G10-Artifact/src/cudnn
2 make clean && make

Note that the profiling may take a long time.

A.7 Methodology
Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/artifact-review-and-
badging-current
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

Note that the profiling may take a long time.

A.8 Methodology
Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/artifact-review-and-
badging-current
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 GPU Memory and Storage Architecture
	2.2 Approaches to Scaling GPU Memory

	3 GPU Memory Characterizations
	4 G10 Design
	4.1 System Overview
	4.2 Tensor Vitality Analysis
	4.3 Smart Tensor Eviction
	4.4 Smart Tensor Prefetching
	4.5 Unified GPU Memory and Storage
	4.6 Tensor Migration with Extended UVM

	5 Implementation details
	6 Discussion and Future Work
	7 Evaluation
	7.1 Experimental Setup
	7.2 End-to-end Performance
	7.3 Performance with Varying Batch Size
	7.4 Impact of Varying Host Memory Capacity
	7.5 Impact of Varying SSD Bandwidth
	7.6 Impact of Profiling Errors
	7.7 Impact on SSD Lifetime

	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Checklist (Meta-Information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Results
	A.7 Experiment Customization
	A.8 Methodology

