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Abstract—The need for higher energy efficiency has resulted
in the proliferation of accelerators across platforms, with custom
and reconfigurable accelerators adopted in both edge devices
and cloud servers. However, existing solutions fall short in
providing accelerators with low-latency, high-bandwidth access
to the working set and suffer from the high latency and
energy cost of data transfers. Such costs can severely limit
the smallest granularity of the tasks that can be accelerated
and thus the applicability of the accelerators. In this work, we
present FReaC Cache, a novel architecture that natively supports
reconfigurable computing in the last level cache (LLC), thereby
giving energy-efficient accelerators low-latency, high-bandwidth
access to the working set. By leveraging the cache’s existing
dense memory arrays, buses, and logic folding, we construct a
reconfigurable fabric in the LLC with minimal changes to the
system, processor, cache, and memory architecture. FReaC Cache
is a low-latency, low-cost, and low-power alternative to off-die/off-
chip accelerators, and a flexible, and low-cost alternative to fixed
function accelerators. We demonstrate an average speedup of 3X
and Perf/W improvements of 6.1X over an edge-class multi-core
CPU, and add 3.5% to 15.3% area overhead per cache slice.

Index Terms—Reconfigurable Computing, Near Memory Ac-
celeration, In Cache Computing, Logic Folding

I. INTRODUCTION

The end of Dennard scaling [1]–[4] has prompted a paradigm

shift in processor design, with architects increasingly looking to

specialized accelerators for improved performance and energy

efficiency [5]–[13]. The use of off-die, and off-chip accelerators,

in both data centers and edge devices [10], [14], [15], continues

to grow, as exemplified by the increasing adoption of GPUs,

FPGAs, and ASICs. However, where to place these accelerators

and how to deliver data to them remain as research questions.

For example, PCIe-attached accelerators access data in the

system memory at limited bandwidth, e.g. 16GB/s in PCIe

3.0 x16, and PCIe system drivers incur tens of thousands of

instructions per accelerator transaction [16], translating into

longer latency and lost bandwidth. As a result, each DMA

transfer can cost between 1μs and 160μs [17]. Furthermore,

PCIe-attached cards draw additional power, with a recent study

noting that a PCIe-attached FPGA drew 12W when idle [18].

In edge computing scenarios, working set sizes can be small

enough that the time and energy spent shuttling data back and

forth render off-chip and off-die accelerators undesirable for

many applications.

The widening gap between on-chip and off-chip memories

is another important factor. For example, fetching data from

off-chip DRAM takes 56ns [19] and consumes 28 to 45 pJ/bit

(40nm). In contrast, reading 16bits from an on-chip 32K-word

SRAM array costs 11pJ [20]. The widening gap has prompted

the exploration of placing accelerators closer to memory

[21]–[26]. However, these near memory accelerators (NMA)

have traditionally faced many challenges, including: DRAM

technology process limits, program transparency, flexibility and

sheer design complexity.

When we consider the fast evolving nature of workloads, and

the rising design, engineering and verification costs that often

make custom ASIC/SoC with on-chip accelerators undesirable,

we see that there is a need for a fast, energy-efficient, and

programmable reconfigurable computing architecture.

To address these challenges, we seek to provide a middle

ground between energy efficiency, cost, and performance, in a

manner that introduces limited changes to existing system,

processor, and memory architectures. We present FReaC

Cache (Folded-logic Reconfigurable Computing in Cache), a

reconfigurable computing architecture that leverages existing

structures in the last-level cache to build accelerators, thereby

bringing flexible, configurable, cheap, and energy-efficient

computation closer to memory. FReaC Cache partitions the

last level cache (LLC) and uses a portion of the LLC’s dense

memory arrays to build reconfigurable logic in the form of

look-up tables (LUTs). Along with limited logic structures,

FReaC Cache uses the LUT arrays with logic folding [27] to

implement several micro compute clusters, each of which is a

very small, but dense, computational unit. In doing so, FReaC

Cache is able to provide on-demand reconfigurable accelerators,

with access to the large bandwidth available at the LLC, yet

without the need to move data and configuration off-chip. Thus

FReaC Cache is able to provide better end-to-end performance

and power, at much lower cost, when compared to off-chip

accelerators. FReaC Cache partitions are flexible, allowing the

user to choose how much of LLC to use for computation, with

the rest remaining as a cache.

In this work, we focus on introducing the ideas and principles

of FReaC Cache by incorporating it into the LLC of existing

processor architectures, without significant modifications to

other parts of the processor, and propose its use for edge

devices that require low-cost and low-power acceleration for

fine-grained tasks across a diverse group of applications. Our

goal is to offload small but important kernels that would benefit

from customized accelerator logic, and the high throughput
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and high bandwidth of FReaC Cache. FReaC Cache can be

incorporated into existing or new processor architectures and is

not limited to any particular core micro-architecture, instruction

set, or application domain.

In contrast to processing in memory (PIM) and NMA, FReaC

Cache provides a less invasive solution, while still having ample

bandwidth available at the LLC. Where PIM architectures

attempt to perform in-situ processing of data in memory [22]–

[26], [28], [29] by either adding additional computational units

or manipulating data within the memory arrays, FReaC Cache

uses SRAM structures in the LLC to build computational units,

without modifying the memory arrays. Thus, FReaC Cache

preserves the density and timing of the existing memory arrays,

and also limits design costs. In contrast to NMA systems

that seek to place computation adjacent to DRAM banks,

chips or even in the DRAM controller, FReaC Cache sits

farther away from main memory. However, most NMA and

PIM approaches require some change to the host processor in

order to communicate with the added accelerator via custom

instructions in the ISA [21], [23], [24], [30]. ISA changes

are not trivial, and changes to the core frontend are often

accompanied by a large amount of design verification effort. In

FReaC Cache we avoid the addition of any custom instructions

or ISA modifications. Rather, we only use loads and stores

to reserved address ranges to communicate with the in-cache

accelerator. This style of communication is possible due to the

core’s proximity and relatively low latency access to the LLC.

The need for flexible, low-cost, low-power, and high-

performance accelerators is further exacerbated by growing

demands for processing at the edge,1 and the evolving nature of

workloads makes programmability of prime importance. While

many accelerator solutions are programmable [21]–[23], [31],

most of them are still domain specific [8], [24], [30], [32].

Such accelerators cannot be modified easily to adapt to the

fast-evolving algorithms. Take, for example, computer vision.

The winning team of ImageNet 2010 [33] used SIFT (Scale-

invariant feature transform) and LBP (local binary patterns),

whereas the introduction of AlexNet [34] in 2012 prompted

a dramatic shift in the domain towards deep neural networks.

However, within the sub-domain of deep neural networks,

we observe a constant evolution in the algorithms and their

requirements. Thus, we submit that in this environment of

changing algorithms, a reconfigurable accelerator fabric is

ideal, and FReaC Cache strives to provide this flexible fabric.

We position FReaC Cache as a low-cost, low-latency, and

low-power alternative to off-die/off-chip accelerators, and a

flexible and low-cost alternative to on-chip fixed function

accelerators. We use cheap structures to provide acceleration

on-demand, and focus on cost and energy sensitive scenarios

such as edge-computing.

1While FReac Cache is highly energy-efficient, we do not consider ultra-low
power devices, such as wearables, in this work. Rather, we focus on processors
such as the Samsung Exynos 9810, Apple A12X, Nvidia Tegra Xavier, and
Intel desktop/mobile SoCs, with 4 to 8 cores, operating at clock frequencies
of 2 to 4GHz, and running machine learning, data processing, and security
apps at the edge.

Fig. 1. Cache slice architecture. Data arrays (DA) shown in green, and
Tag/State arrays shown in yellow.

Fig. 2. Sub-array (SA) organization

Our key contributions are:

• We introduce a cache-based reconfigurable computing

architecture, FReaC Cache.

• We describe the circuit and architectural components

needed to build look-up tables (LUTs) using the existing

memory arrays in the LLC.

• Our architecture provides very high logic density, when

compared to modern FPGAs, and is capable of high-speed

dynamic reconfiguration.

• We demonstrate that FReaC Cache achieves average

speedups of 3X, and average Perf/W improvements of

6.1X, when compared to a modern CPUs, and adds only

3.5% to 15.3% of area overhead to the LLC slice.

Our paper begins with a background discussion in Sec. II.

We then present FReaC Cache in Sec. III and IV, after

which we present our evaluation in Sec. V. Sec. VI provides

additional insight, before we discuss related work in Sec. VII,

and conclude in Sec. VIII.

II. BACKGROUND

Last Level Cache Design: Modern last level caches are

designed for very large capacities. Hence, most modern chip

multi-processors use a distributed LLC NUCA (Non-Uniform

Cache Architecture) design [35], with the cache being split into

many slices, one per-core or per-core-cluster. These slices are

organized around a central interconnect that provides high

bandwidth between the cores and all the slices [36]–[38].

Memory addresses are interleaved across slices, and cores

may access any slice. However, cores may experience non-

uniform latency depending on the slice’s distance, due to the

use of interconnects, such as ring busses [36]. Over the last

few generations, LLC architecture has not changed much [36],

[38], [39], maintaining its distributed slice architecture, from

older bulk designs [40]. We demonstrate our design using the

sliced LLC architecture described by Huang et al. [36].

Fig. 1 illustrates the organization of a 20-way associative

2.5MB cache slice [36]. The slice is comprised of multiple data

arrays, organized in a tiled fashion in four quadrants. Each way
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Fig. 3. (a) FPGA architecture. (b) CLB design. (c) SRAM based 3-LUT.

is comprised of a single data array (DA) from each quadrant;

i.e. each way is comprised of four data arrays (DA), along

with a Tag/State and CV(valid)/LRU array. A control box unit

sits in the middle of the cache slice, and is responsible for

all control operations, coherence and interconnect interfacing.

Each 32KB data array is comprised of two 16KB sub-arrays,

each with a 32bit port. Fig. 2 presents the micro-architecture of

the sub-array (SA). For simplicity, we do not show redundant

rows and columns. The sub-array is comprised of 32 bit-slices,
each of which contributes 1 bit to the subarray output, and is

comprised of two chunks. While the sliced LLC architecture

described by Huang et al. [36] was presented in the context

of a Xeon E5 server processor, the sliced LLC design style

is widely used in low-power, edge-class processors such as

Samsung Exynos SoCs. That is, the ideas presented in this

work lend themselves to any modern LLC architecture that

uses a slice-based design, and are not restricted to server-class

processors. In this work, we consider an architecture, with

sub-arrays of 8KB, for a total slice capacity of 1.25MB.

With this architecture in mind we present four observations.

(1) the organization of the sub-arrays, makes introducing any

new logic inside the cache data arrays very expensive. (2)
Sub-arrays in a way operate in lock-step, accessing their cells

in parallel. (3) Since cache lines are not interleaved between

data arrays of multiple ways, individual ways can be accessed,

modified, and even powered down independently. (4) While

cache accesses can take several cycles, individual data array

operations are only 1 to 2 cycles, and bit line sensing is 1

cycle long [36]. Data arrays in a way share a data bus, thus

serializing cache line reads and writes.

Reconfigurable Architectures: Field programmable gate

arrays (FPGAs) are virtually synonymous with reconfigurable

computing, and can be implemented in several ways. Typically,

an FPGA is comprised of an array of logic blocks, i.e. Con-

figurable Logic Blocks (CLBs), organized in an island layout

with programmable routing structures, such as switch boxes

(SB) and connection boxes (CB), providing the interconnect

between each tile, as shown in Fig. 3. The CLBs are comprised

of several basic logic elements (BLEs), each of which includes

a look-up table (LUT) and a flip-flop. Modern FPGAs include

special IO (input/output), DSP, and memory blocks as well.

FPGA LUTs are comprised of a multiplexer tree or mux tree,
and SRAM configuration memory that stores the configuration

bits for the Boolean function implemented by the LUT. Thus

Fig. 4. (a) Logic folding. (b) Compute sub-arrays.

a K-input LUT or a K-LUT would need 2K SRAM cells to

store its function. Fig. 3c illustrates a 3-LUT. FReaC Cache

builds on this idea to deploy dense LUT arrays, as we shall

describe in the next section. Global routing structures that

connect CLBs, such as switch boxes and interconnect wires,

are responsible for the bulk of the delay in FPGAs, and can

occupy nearly 80% of the area [41]. Thus, in this work, we

limit the use of global routing structures.

Logic Folding: Logic folding leverages dynamic recon-

figuration to allow large circuits to be implemented with

limited logical resources by folding the circuit over time and

sharing the available logic resource across time, i.e. temporal
pipelining [27], [42]. Thus, relatively large circuits can be

implemented in a smaller area, albeit with a longer latency.

In Fig. 4a, each node in the graph is a look-up table (LUT)

in a combinational circuit. By partitioning the graph into four

levels, we can now implement each level as a state of the

temporal pipeline, thereby requiring only three LUTs rather

than ten, but increasing the latency to four timesteps. At each

timestep, the three LUTs must be reconfigured to implement

the next level’s operations. Thus, the circuit can be realized

in 4 cycles if we can reconfigure every cycle. Dependencies

between levels are handled by latching outputs.

III. FREAC CACHE

FReaC Cache partitions the last level cache (LLC), and

uses a portion of it to build reconfigurable logic. In order

to do so, FReaC Cache builds on two key ideas: (1) Dense

reconfigurable logic can be realized by leveraging the LLC’s

SRAMs for LUT configuration memory, and by minimizing

complex global routing. (2) Logic Folding, as described in

Sec. II, and illustrated in Fig. 4a, allows us to trade latency

(clock cycles) for reduced resource requirement per cycle

in order to map circuits. The high frequency offsets latency

penalties incurred during the folding process.

In this section we describe the individual components of

FReaC Cache, and the steps involved in transforming and

running accelerators in the LLC. Fig. 5 presents a high-level

overview of the end-to-end operation of FReaC Cache in

six steps, for a single LLC slice. 1©: In order to leverage

FReac Cache as an accelerator, a portion of the LLC must

be selected to operate as an accelerator. 2©: Since the entire

way is consumed to form compute logic, dirty lines in the

selected ways must be flushed. 3©: Next, the selected ways
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Fig. 5. End-to-end operation of accelerators in FReaC Cache, in a single LLC slice.

are locked for compute mode. Note that in order to flush and

lock cache ways, we leverage the existing cache control box

by introducing our own compute cluster controller (CC Ctrl).

The host interacts with the CC Ctrl unit via native load and

store (LD/ST) instructions only. 4©: With the ways ready for

compute mode, we write the accelerator configuration bits.

We will discuss the mapping of accelerators and generating

logic folding schedules in more detail in Sec. IV. 5©: The

host can fill scratchpads and configure any offsets if needed

before beginning computation. 6©: Finally, the host issues a run

command, via LD/STs to the CC Ctrl unit, and waits for the

operations to complete. Once the accelerators have completed,

a new set of accelerators can be programmed or new data can

be provided to the existing set of accelerators by repeating

steps 4© and 5©.

In FReaC Cache, we transform the slice’s existing sub-arrays

into Dense Compute Sub-Arrays and then group the compute

sub-arrays with additional logic structures into Micro Compute
Clusters. We call this slice a Reconfigurable Compute Slice .
Fig. 6a,b and Fig. 4b illustrate these components, and we will

now discuss them in detail.

A. Dense Compute Sub-Arrays

As described in Sec. II, a look-up table (LUT) is comprised

of configuration memory and a mux-tree, and a LLC sub-array

is capable of providing a fixed number of bits on each access.

Thus, each row of the sub-array can hold the configuration bits

of one or more LUTs, and by cycling through the rows of the

sub-array, one by one, we can implement a different LUT(s),

and hence a different logical operation, on each access. That

is, each row of a sub-array can implement a temporal pipeline

stage in logic folding. In order to realize this the sub-array

is paired with a mux tree, via a memory latch, as shown in

Fig. 4b. The memory latch, in conjunction with the mux tree,

has thus formed a single look-up table. Note that the inputs

to the mux tree are the LUT inputs. Upon reading a new row,

the LUT is reconfigured to perform a new operation. Since the

sub-array is relatively small, each access can take place in one

cycle [36]. Thus, we can dynamically reconfigure the LUT on

every cycle. Since a single LUT may not be enough to realize

a Boolean circuit, the output of the LUT may be stored in the

state latch, to be fed back into the input of another LUT at

a later time step. Crucially, the mux trees, latches, and other

extra logic are external to the sub-array, and do not disturb the

existing memory design.

In Fig. 4b we show a single mux tree. This pairing would

result in a single 5-input LUT for each row of the sub-array,

since each sub-array in a slice is capable of providing 32 bits

per access (Sec. II). However, several smaller mux trees can

be used to create two 4-input LUTs, or four 3-input LUTs,

and so on. The size of LUTs is a well studied topic, and LUT

sizes of 4 to 6 are considered the most optimal [43], and used

in commercial FPGAs [44], [45].

B. Micro Compute Clusters

A single compute sub-array may require a large number of

folding cycles in order to realize a logic folded circuit. Thus, we

propose organizing the compute sub-arrays into micro compute
clusters (MCC) by grouping every two adjacent data arrays.

i.e., four sub-arrays, into a micro compute cluster, as shown

in Fig. 6b. Within a micro compute cluster, each sub-array

activates one or more LUTs per cycle, with the help of the

latch and the mux-tree placed outside the sub-arrays. In order

for the LUTs realized by each compute sub-array to operate

together, we add an operand crossbar, similar to the kind found

in the CLB of an FPGA (Sec. II), in the cluster as well. Next,

we provide a small bank of registers to store intermediate states

from the folded circuit and implement sequential logic in the

original design. Finally, since arithmetic operations such as

multiplication are expensive to implement with LUTs, we add

a dedicated integer multiply-accumulate (MAC) unit as well.

The additional logic structures introduced are placed outside

the sub-arrays, and are spaced between the two data arrays.

Thus, we do not affect the area or timing of the memories.

Operation: A logic folded circuit can now be realized

within a micro compute cluster by implementing each level

of the circuit, cycle by cycle, by loading a new configuration

from each sub-array. In order to simplify this, we store the

configuration bits of each level in sequential addresses in the

sub-arrays, and reuse the existing address busses to step through

addresses. The number of steps (folding levels) is determined by

the logic folding schedule (Sec. IV). The schedule is executed

and managed by a micro compute cluster controller (CC Ctrl)

unit that we add to the cache’s control box. Next, at each

time step, an operand may be buffered in a register or LUT

or fetched from the bus. This movement is facilitated by the

operand crossbar, which must be configured for each time

step, as determined by the schedule. Hence, the crossbar

requires configuration bits as well, which are stored in the

way’s Tag/State arrays, which are not in use while the way
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Fig. 6. (a) Reconfigurable compute slice. (b) Micro Compute Cluster (MCC) architecture. (c) Large MCCs and scratchpads.

is being used for compute. Thus, we eliminate the need for

additional configuration memory.

Physical Design Considerations: We chose data arrays

in adjacent ways, rather than neighboring data arrays, when

creating micro compute clusters, for two reasons: First, data

arrays are laid out in quadrants (Sec. II) running across all ways.

Thus, arrays in the same quadrant are easier to group, without

crossing any layout boundaries. Second, interconnecting data

arrays within a way would require longer wires, increasing

power and latency. Next, we introduce a latch between the data

bus and the mux tree. This prevents a long timing path between

the sub array output, through the mux and to the crossbar, and

does not require the sense amplifiers to be redesigned. The

crossbar outputs that drive the data bus are buffered as well.

Note that we have chosen to group 2 data arrays into a micro

compute cluster because it lends itself easily to the baseline

slice architecture [36].

To further minimize overheads, we reuse the existing data

busses from both ways. As shown in Fig. 6b, we dedicate

one data bus for external operand movement, and the other for

moving crossbar configuration data. During compute operations,

LUT configurations are read from their respective sub-arrays,

while the CC Ctrl unit fetches the crossbar configuration from

tag arrays and broadcasts it to clusters, prior to the scheduled

time step. The CC Ctrl unit also loads configurations into the

arrays via the existing data busses through simple memory

store operations.

C. Reconfigurable Compute Slices Operation

Fig. 6a illustrates the LLC slice with micro compute clusters.

For illustrative purposes, we present eight CC tiles, and five

tiles are shown with all of their logical components - two

data arrays and the cluster logic (CL). Cluster logic includes

the latches, mux trees, MAC units, registers and crossbar, as

in Fig. 6b. Note that since micro compute clusters are built

using data arrays across two ways, two ways are completely

consumed at a time, such that four compute cluster (MCC) tiles

are formed in their place. For maximum flexibility, we add

cluster logic to all data array pairs. This allows us to consume

an entire cache slice or just a fraction of the slice on-demand,

effectively partitioning and reconfiguring the slice on the fly

in order to enable computational logic. We also introduce a

compute cluster controller (CC Ctrl) unit to the slice’s control

box to assist with locking and flushing ways, and the control

and coordination of clusters. The CC Ctrl leverages the cache

controller’s existing features and mechanisms to accomplish

its tasks. Incoming requests from the cores are serviced by the

LLC controller, and the CC Ctrl Unit does not interfere even if

a portion of the cache is being used for compute. If the entire

LLC is consumed for compute, then core requests are treated

as misses, and forwarded to memory.

Host Interface: FReaC Cache does not require custom

instructions. The host interacts with the accelerators and CC

Ctrl unit via load and store (LD/ST) operations. A range of

addresses per slice is reserved for FReaC Cache operations,

such that control registers for the CC Ctrl unit are exposed

to the host core. The host sets up the LLC slice for compute

by writing to control registers in the CC Ctrl units. This setup

includes selecting, flushing, and locking ways for compute

(Steps 1©, 2©, and 3©, in Fig. 5). In order to configure the

accelerator, the host writes micro compute cluster configuration

data to a specified address in CC Ctrl Unit, which in turn

writes the configuration data to the cluster sub-arrays (Step

4©). The host can then fill scratchpad buffers (to be discussed

later), and set up accelerator address offsets, by writing to

another range of addresses (Step 5©). Again, the CC Ctrl unit

is responsible for forwarding the data into the corresponding

sub-arrays. Finally, a run register is allocated as well (Step

6©). These control and data registers are unique to a cache

slice, and the setup and configuration must be performed once

per slice. The address space and the control registers can be

exposed to user code via limited OS support. With the help of a

kernel driver, the physical address range can be assigned virtual

addresses (ioremap() operations), and then exposed to user

space via a character device driver, which can be accessed

from the user program via an mmap() operation.

Setup and Configuration: Steps 1©, 2©, and 3©, in Fig. 5

outline how an LLC slice is set up for compute. First, ways

must be selected and flushed, and then locked for compute

mode. The mechanisms for enabling this are already available

in modern LLCs, and are leveraged by the CC Ctrl unit. As

described in Sec. II, ways in the cache are independent of

each other, and thus it is possible to instruct the cache control

logic to ignore a group of ways. LLCs already include sleep

logic [40] [36] to save power, as well as fuse bits to turn off

ways in case of poor yield or manufacturing defects. Existing

LLCs can also exclusively allocate cache ways to individual

cores, thereby modifying the effective LLC seen by the other

cores [46]. However, prior to configuring the ways as compute,

the ways must be flushed of dirty cache lines. The overhead
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of flushing out the ways depends on several factors, including:

inclusion policies, cache hierarchy, memory bandwidth, and

how many lines are dirty. In the worst case, if all lines in the

LLC must be flushed, then flush speed is limited by off-chip

memory bandwidth. For a 10MB LLC, this can be in the order

of hundreds of microseconds2. Once the ways are flushed and

locked into compute mode, they do not participate in caching.

The remaining ways continue to operate as a part of the LLC.

The host can then write configuration bits (Step 4© in Fig. 5)

into the micro compute clusters, via the CC Ctrl unit in the

slice. Once configuration bits for an accelerator have been

loaded, they needn’t be fetched again unless the configurations

are evicted or overwritten.

D. Accelerator Operation

FReaC Cache is a tiled architecture, wherein each micro

compute cluster (CC) can operate an independent computation

unit (accelerator tile) of its own, by mapping accelerator circuits

to it, as shown in Fig. 5. In order to do so, the accelerator

circuit is folded and scheduled, with each time step being

mapped to LUTs, MACs, and flip-flops (Sec. IV). On each

time step the cluster can access up to four 5-LUTs or eight

4-LUTs, one MAC, and one bus operation.

Micro compute clusters in a way share an address bus, and

thus operate in lock-step. To further simplify the design, and

reuse as many structures as possible, we tie the address lines of

all clusters. Since all clusters run the same accelerator and have

the same schedules, all accelerator tiles operate in lock-step. As

discussed earlier, the CC Ctrl unit is responsible for stepping

through the schedule and broadcasting the next address for the

clusters on the address bus.

Operand Movement: In order to provide access to external

operands, we propose using one of the data busses as the

operand datapath (Fig 6b). The cluster first places the address

of the operand on the bus, which delivers the address to the

CC Ctrl Unit. The CC Ctrl unit processes the address, applies

any offsets if needed, and hands it over to the cache controller

to be serviced. If the cache slice registers a hit locally, the

operand is forwarded back to the clusters via the same data

bus. A similar process is followed for write requests. Since

the clusters operate in lock-step, multiple requests may be

received at once, and the clusters will stall till all requests

are serviced. Unlike the CPU core, the clusters wait for the

writebacks to complete. In both read and write cases, the cache

is responsible for coalescing requests, if it has the capability.

Since data arrays share a bus, requests and responses may need

to be serialized across multiple cycles.

FReaC Cache Scratchpads: To fully exploit the capabil-

ities of FReaC Cache, we introduce support for scratchpads.

By locking-out ways in the cache, we allow the CC Ctrl to

route accelerator loads and stores to the sub-arrays in the

ways reserved for the scratchpad. Using the existing cache line

mapping, a total of 32 bytes may be loaded at a time from each

way. However, due to the shared data bus between sub-arrays

2Assumes four channels of DDR4.

and the narrow datapath in the cache’s control box, delivery

of words is serialized. We use the processor core to fill the

scratchpads, and thus enable the cores to initialize data directly

into the scratchpads. In doing so, we avoid the need to flush

data out of upper level caches, and the overhead of copying

data into the scratchpads (Step 5© in Fig. 5). Scratchpads are

not necessary for FReaC Cache, but most accelerators use local

scratchpads for improved performance and power. In addition,

scratchpads help address the LLC’s inability to access the TLB,

which can add overheads. Without scratchpads or access to the

TLB, FReaC Cache would require: (1) Working set is flushed

out of upper level caches, (2) Cores do not touch the data while

the accelerator is operating, (3) Core provides the physical

address, and (4) Data is contiguous and pages are pinned in

the host memory.

E. Large Micro Compute Clusters and Multi-Cores

Enabling Larger Compute Clusters: By restricting accel-

erators to a single micro compute cluster, we limit them to four

to eight LUTs per cycle (assuming 5-input or 4-input LUTs).

For control or logic heavy applications, that may have large

LUT-based circuits, this may result in a large number of fold

steps and hurt performance. Thus, we propose the addition of

lightweight FPGA-styled switch boxes, where each switch box

performs static routing, with segments connecting neighboring

micro compute clusters. We can now group 4, 8, 16, or up

to 32 compute clusters to form a single large accelerator tile,

with more LUTs available per cycle. Fig. 6c presents the final

slice overview, and illustrates an example where an accelerator

tile is formed by using four MCC, and two ways are used to

form a scratchpad.

Due to the density of the compute clusters, the limited

number of LUTs per cluster, and the short distances between

clusters, supporting such global routing structures is not as

expensive as on traditional FPGAs. Moreover, a single cache

slice is significantly smaller than an FPGA, making routing bits

from one end to another possible within a single clock cycle.

We explore overheads and timing in more detail in Section V.

FReaC Cache in Multi-Core Systems: In FReaC Cache,

accelerators implemented in each slice operate independently of

each other. Communication between accelerators is performed

via the global address space, as in other data-parallel architec-

tures like GPUs. In the case of large compute requirements,

the problem can be broken down into smaller independent

problems, which are worked on by each slice’s accelerator(s).

Thus, FReaC Cache is very amenable to data-parallel problems.

Note that the switching infrastructure that interconnects com-

pute clusters is limited to a single slice as well. Thus, the size

of an accelerator tile is limited by the size and associativity

of an LLC slice. Overall performance is determined by the

associativity, number of LLC slices, and the total number of

MAC units in some cases.

IV. MAPPING ACCELERATORS

FReaC Cache is a flexible architecture; a portion of the LLC

slice can be used for computation, while the rest can be used
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Fig. 7. (a) Slice partition example. (b) Mapping flow.

as cache, as illustrated in Fig. 7a. Assuming 8KB sub-arrays,

the slice provides: a 256KB cache, a 512KB scratchpad, and

16 MCC tiles which can be used to implement one or more

accelerator tiles per slice. Using multiple slices will increase

the number of accelerators and scratchpads.

Logic Folding: In order to map the accelerator to a slice, we

must construct a folding schedule. Scheduling and mapping for

logic folding has been explored in previous work for FPGA

styled designs [42], [47]–[49]. In order to study the efficacy of

FReaC Cache’s architecture, we created a mapping flow, based

on previous work, that provides a schedule that describes how

many cycles the circuit is spread over, as well as the resources

used in each cycle within a cluster. Recall that the schedule is

common to all compute cluster tiles used to form an accelerator.

Fig. 7(b) illustrates our proposed flow.

We begin with an RTL design of the accelerator. In this

work we use high-level synthesis (HLS), but we are agnostic to

the source of the RTL. As with any new acceleration paradigm,

accelerators in FReaC Cache must be tuned for the architecture.

Since logic folding already performs temporal pipelining,

traditional performance optimizations, such as pipelining, may

result in longer folding schedules and hurt performance. In

addition, micro compute clusters only have one operand path,

the data bus, and scratchpad buffers are outside the clusters.

Thus, an accelerator tile should be designed with a single

memory port, and no internal memory buffers. Note that

multiple tiles are instantiated to leverage all the available

internal bandwidth in the LLC slice. Once we have the

accelerator RTL, we use the open-source VTR toolchain [50]

to perform logic synthesis and technology mapping, in order

to map the circuit into a netlist of look-up tables, flip-flops,

adders, and multipliers. The synthesized circuit, or netlist, is

a directed graph (DAG), where the primary inputs (PI) and

primary outputs (PO) of the DAG are the accelerator module’s

ports - memory, enable, start, done. Next, our folding algorithm

begins by performing a topological sort of the input DAG,

which is then used to produce a leveled graph, as shown in

Fig. 4a. The leveled graph is a re-organization of the input

DAG into levels, where each level consists of nodes (vertices)

with no dependence on each other, but with incoming edges

(dependencies) from nodes in a higher level [42], [47]–[49].

Next, we partition the DAG based on resource constraints

derived from how many micro compute clusters are used per

accelerator tile. A graph partition is formed by grouping one

or more levels together until a resource constraint is violated.

We then perform logic folding within the partition to ensure all

constraints are met. Since logic folding is performing temporal

pipelining, each schedule step realizes a combinational logic

path [49]. The final schedule is then the sequence of each

partition’s schedule3. The schedule determines the number of

times the circuit is folded (folding cycles or steps), which

in turn determines the effective clock rate of the circuit. A

circuit folded N times would require N cache clock cycles to

implement the entire circuit, making the effective clock rate of

the circuit as CacheClock/N . Hence, minimizing the number

of logic folding steps improves performance.

V. EVALUATION

Our evaluation makes use of the gem5 [51] simulator. We

have implemented a cycle-accurate timing model within gem5

to model FReaC Cache’s performance by accounting for: the

folding schedule of each benchmark accelerator’ synthesized

circuit, the contention on the cache buses when moving

operands from scratchpad to clusters, cluster IO bandwidths,

and loading of operands to the accelerator tiles. For each

benchmark accelerator, we perform an RTL simulation to

generate traces of memory accesses used, and the exact number

of cycles it runs for. The system we simulate is an 8-core ARM

micro-architecture, similar to the A15s in an Exynos-5 SoC,

and is described in Table I. We use McPat [52] and Cacti 6.5
[35] to generate the size, power, and latency of the memory

arrays (Table II). For our simulation, we consider the latency

and power of reading a word from a subarray, not the latency of

fetching an entire cache line from the L3. Thus, we see that the

latency of reading a single word from a subarray allows us to

perform one read per cycle, thereby allowing us to reconfigure
our subarray every cycle as well. Similarly, movement of data

from subarrays in one way to another requires movement

along a shared databus within the cache control box and is also

serialized. We estimate the total leakage power of the LLC is

1.125W via McPat.

For our evaluation, we selected a mix of benchmarks

from MachSuite [53], and a few handwritten, that were well

suited for FReaC Cache’s intended use case, and represented

compute, memory, and logic (LUT) bound apps. We excluded

benchmarks such as n-body molecular dynamics (KNN, GRID)

and DNN training (backprop), as we targeted edge processing

in this paper. FReaC Cache is capable of accelerating small

but important kernels that would benefit from the low-latency,

high-throughput, and high-bandwidth data access of FReaC

Cache. Hence we focus on kernels, rather than large multi-

phase applications. Since the original benchmark datasets were

very small, we scaled the problem by a factor of 256X in a

batched fashion. Work is divided evenly across all available

accelerator tiles/CPU threads in a data parallel fashion.

3The small size of the CC tiles allows us to design the crossbars and
switches such that data and configuration bits can move to LUTs and MACs
in the time it takes to reconfigure the next level (1 cycle). Thus, our folding
solution does not need to create multi-cycle paths.
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TABLE I
SYSTEM SIMULATION PARAMETERS

Parameter Value
ISA/Num Cores ARM/8 cores
Fetch/Decode Width 3/3
Dispatch/Issue/Commit Width 6/8/8
Clock 4GHz
L1D Cache Size/Ways/Latency 32KB/2-way/2cycle
L2D Cache Size/Ways/Latency 256KB/8-way/10cycle
L3D Cache Size/Ways/Latency 10MB/20-way/27cycle
L3D Cache Slice Number/Size 8/1.25MB
Memory Controller 4 channels, DDR4-2400

TABLE II
MEMORY PARAMETERS (32NM)

SRAM Subarray
Size Dimensions AccessTime AccessEnergy
8KB 0.136 X 0.096mm 0.12ns 0.00369nJ

L3 Cache Slice
Size Height Width Data Subarrays
1.25MB 1.63mm 1.92mm 160

A. Evaluating Area and Timing Overheads

In order to evaluate the overheads involved in FReaC Cache,

we use Cacti [35], McPat [52], DSENT [54], and RTL synthesis

with a 45nm library that is scaled to 32nm. FreaC Cache adds

the following components to form a micro compute cluster

(MCC): Mux Trees, Operand XBars, Intermediate Registers,

and MACs. The organization and functionality of MCCs are

far less complex than those of a processor, and we take special

consideration to minimize impact on cache timing: (1) By

adding buffers, we avoid loading existing buses. (2) We do not

modify the memory arrays themselves. (3) The majority of the

key components are wire heavy but localized to a cluster, and

modern process nodes have high wire density. (4) As we shall

demonstrate, the new components have negligible area, thus

their addition doesn’t significantly impact critical wire paths.

We take a conservative approach to our area and delay

modeling, and consider the worst case. Since we add new

wires in short segments, we can reasonably estimate these via

Cacti and DSENT, as in [55]. In particular, Cacti version 6+ was

developed to be cognizant of wire delays in large caches [56].

First, we consider micro compute clusters. Four components

have been added: an operand xbar, mux-trees, intermediate

registers, and a MAC unit. We use RTL models to estimate the

cost of a 32bit MAC unit and 256 intermediate value holding

flip-flops to be 1011 μm2 and 1086 μm2 respectively. Next,

we use DSENT to estimate the cost of a 32X1 Mux tree to

be 45 μm2 and the operand crossbar to be 1239 μm2. Thus,

the total area added per cluster is 0.0034mm2. If we enable

32 clusters in the slice, using 16 ways, the total overhead is

0.109mm2, which is just 3.5% of the total area of the LLC

slice described in Table II. This enables the basic FReaC Cache

mode of 32 independent accelerator tiles per slice.

However, as we described in Sec. III-E, there is a potential

benefit in enabling larger clusters. In order to do so, we consider

FPGA-style island routing as shown in Fig. 3. To do so, we

place a switch box in-between groups of four micro compute

Fig. 8. Folding cycles needed by accelerators. Data is shown on a log scale.

Fig. 9. Impact of compute to memory allocation ratio on number of accelerator
tiles. Accelerator tile size 1.

clusters, and an additional switch box to cross the tag arrays

and control box, to enable X-Y routing. Hence, we have a

total of 28 (7X4) switch boxes, placed across 16 ways of

the cache, creating an interconnect fabric between the 8X4
micro compute cluster tiles. Note that FPGA routing structures

and interconnects can be designed to be placed on top of

buffers and logic [57]. Hence, once we determined the area

of logic blocks, we could determine the lengths of wires and

interconnects. We then swept the frequency of our model with

DSent and CACTI until timing wasn’t violated in the worst

case, and thus settled on 3GHz for large compute clusters, and

4GHz for small compute clusters. The longest path possible

is the Manhattan distance between two switches at opposite

corners of the slice. We found this to be 2.864mm, based on

the geometry of the cache slice and subarrays, which must

be completed over 10 links between the switches, and must

meet a delay of 0.3 ns to complete within a cycle. We consider

32 bit links, and compute the total area of global routing and

links to be 3469 μm2. Finally, the switch boxes will require

configurations as well, and we add a wide output 8KB memory

for every four micro compute cluster. This adds a total overhead

of 0.35mm2. Note that this is only necessary if we need to

operate very large accelerator tiles at 3GHz. Thus, we add a

total of 0.48mm2 or 15.3% overhead to the slice. This is a

conservative estimate as we opted for short links and more

switch boxes, and hence added more configuration memory

for the switches.

B. Accelerator Design Space

We begin by exploring the design space of accelerators being

mapped to FReaC Cache. We synthesized the benchmarks

using Xilinx Vivado HLS. First, we explore the impact on the
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Fig. 10. Speedup as a function of accelerator tile size. Data is shown on a
log scale.

number of compute cluster tiles used to realize an accelerator

tile. The more MCCs that are available per accelerator, the

more resources can be allocated per folding step, and thus

fewer folding cycles. We present the number of folding cycles

for each of the benchmarks in Fig. 8 across different tile

sizes. While allocating more MCCs per accelerator tile reduces

the number of folds, there is a trade-off with the number of

concurrent accelerator tiles per slice.

Thus, there is trade-off between the latency of an accelerator

tile and net throughput. This trade-off also requires considering

the impact of working set proximity. In order to maximize

the performance and efficiency, the working set must be

made available in the scratchpad buffers. Thus, the number

of concurrent accelerator tiles is also limited by the working

set of each accelerator tile. To illustrate this, we consider

different ratios of the LLC being partitioned to compute and

memory. We start with 16 ways for compute and 4 for memory,

creating 32 MCCs and a 256KB scratchpad, and sweep down

to 2 ways for compute and 18 for memory, creating 4 MCCs

and a 1.1MB scratchpad. Fig. 9 presents the max number of

accelerator tiles, of tile size 1 (1 MCC per tile), that can be

fit in a single slice. Accelerators with smaller working sets,

such as AES and dot product engines, are able to fill all 32
MCC tiles with accelerators. However, both computational and

memory-bound kernels such as GEMM, KMP, Sorting, and

Stencil reach maximum number of tiles (and hence, throughput)

by allocating more of the LLC to scratchpads. Note that this

is a function of the accelerator’s working set and the number

of slices available. Overall, we observe that an organization of

32 MCC and 256KB scratchpad, and 16 MCCs with 768KB

scratchpad, allow for the most accelerator tiles to be instantiated

in a single slice.

C. FReaC Cache Performance and Efficiency

We compare FReaC Cache to its base system’s eight ARM

cores, a large PCIe-attached FPGA, Xilinx ZCU102 FPGA,

and a standalone Ultra 96 SoC FPGA system as well. We

use OpenMP to parallelize the baseline benchmarks, in a data-

parallel fashion, across all available physical cores. We modeled

the power of the ARM cores via McPat [52] with a 32nm

low-power library. To evaluate the FPGA, we synthesized the

Fig. 11. Speedup as a function of MCC to mem ratio. Data is shown on a
log scale.

benchmark circuits with all optimization directives enabled.

Next, we attempt to instantiate 256 copies of the benchmark

IPs, to reflect maximum data parallelism. If all copies do not

fit, then we batch the workloads, and scale latency accordingly.

We include a 160 μs latency for DMA and configuration

overheads [17], and also include the cost of transferring data

to the FPGA via PCIe3.0 x16 for the ZCU102, and cost of

transferring over AXI busses in the Ultra 96 (U96). We then

use the Xilinx Power Estimator (XPE) [58] to estimate power,

and account for the board idle and leakage power as 12W [18]

for the ZCU102. The latency of benchmarks on FReaC Cache

was provided by our Gem5 simulator. To provide the best

performance, and consistency with our FPGA comparison, we

move data into the scratchpad buffers. We measure the latency

of the kernel’s operation in FReaC Cache accelerators, and

the latency to transfer the datasets to the scratchpad buffers.

When loading data into the buffers, we load LLC slices in

parallel, thereby making full use of the LLC’s bandwidth.

Kernel latency also includes the time to write the configuration

data. We estimate the power of FReaC Cache by accounting for

the number of reads from the compute clusters and scratchpads.

We also assume the links between the switch boxes run at 100%
load and consume about 9mW per link, and we add leakage

power. We present all data relative to a single thread of the

A15 host.

In order to better understand FReaC Cache, we first examine

a single cache slice and the impact of accelerator tile sizing.

We consider a slice with a 32MCC-256KB partitioning, thus

consuming all 20 ways of the slice. We then sweep across

accelerator tile sizes, allocating 1, 8, and 16 MCCs per

accelerator, and measure the speedup of kernel execution over

a single host core (A15). We also constrain our exploration

with the max number of accelerators per slice, as shown in

Fig. 9. In Fig. 10, with the exception of AES, we see that

increasing tile size improves performance. However, we see

a reduction in performance with tile size 16, since tiles of

16 or more MCCs require a reduction in clock speed. As we

can see in Fig. 8 and Fig. 9, AES has a very high folding

overhead but can fit several copies in a single slice. Thus, it

is better suited for multiple tiles per slice, with few MCCs

per tile. As we noted earlier, there is a trade-off between
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allocating the LLC to memory versus compute. We examine

this more closely in Fig. 11. We present the best performance

possible, across all accelerator tile sizes, for two different

compute-to-memory partitions in a single slice. Once again,

we find that AES strongly prefers more compute clusters over

buffer memory, along with other computational kernels such

as dot product engines, fully connected layers, and GEMM.

Note however that we are restricted to a single slice here. The

optimal compute-to-memory tradeoff is a function of the total

number of slices as well, and we observed that the 16MCC-

768KB split proved to be more useful with increasing number

of slices participating in the acceleration.

Next, we consider the end-to-end performance of FReaC

Cache in our evaluation system. Consuming the entire LLC

may not be feasible in practice, thus we reserve two ways,

128KB, per slice as cache. This leaves 10%, or 1MB, of

the LLC in place, while allocating the remaining 18 ways

for compute and scratchpad. We consider a 16MCC-640KB

compute-scratchpad split per slice, and sweep across all

possible accelerator tile sizes and cache slices. For the sake

of brevity, we report the best performance (speedup) possible

for a given number of slices, and also report the corresponding

performance per watt (throughput per watt), and power. We

present our data in Fig. 12 on a log scale. Speedup is measured

over the end-to-end latency of the application, and we use

a single A15 thread as the baseline. The end-to-end latency

includes the cost of initializing arrays, moving them into the

scratchpad buffers, and back to the core. For comparison, we

include the fully-parallelized eight thread A15 implementation,

along with the ZCU102 and the Ultra96 (U96) FPGAs. For

the FGPAs, we also include the cost of moving data into their

buffers.

As we can see, with increasing number of cache slices,

FReaC Cache’s end-to-end performance increases. Across

benchmarks, FReaC Cache outperforms the ARM cores at

a fraction of power. On average, when using all eight slices,

FReaC Cache is 8.2X and 3X faster than the single and multi-

threaded implementations, respectively. Additionally, FReaC

Cache is 6.1X more efficient (Perf/Watt) than the multi-core

CPU, on average. FReaC Cache proves to be especially

good with memory-bound and computational kernels such as

convolutions, dot products, vector add/mults, fully-connected

layers, and GEMMs, showing up to 14.5X speedup over single-

thread implementations. Logic-heavy apps like AES and sorting

(SRT) suffer a higher penalty due to folding. Thus, while

they are faster than a single CPU thread, the multi-threaded

implementation outpaces them, but at nearly twice the power.

However, the large ZCU102 FPGA outperforms FReaC Cache,

the A15, and the U96 on most benchmarks. This comes at

the cost of a massive increase in power, and we note that the

ZCU102 chip is much larger than the LLC as well as the entire

A15 chip. The edge-centric lower-power Ultra 96 is bested

by FReaC Cache in both computational and memory-sensitive

benchmarks. FReaC Cache also proves to be more energy

efficient than both FPGA solutions as well. Thus, FReaC Cache

proves itself to be highly performant, flexible, and efficient,

across benchmarks and domains.

Finally, moving data to and from accelerators can cost time

and energy. In the case of NMA and PIM, this may also require

additional mechanisms in the core and host OS. To mitigate the

cost of copying data to and from buffers, improve performance,

and avoid pinning pages to physical addresses, FReaC Cache

uses the cores to initialize data directly into the scratchpad

buffers. This effectively eliminates a copy operation, but still

costs time to do so. In our evaluation in Fig. 12 we considered

the end-to-end latency of the application, including the cost

of initializing and copy data. In Fig. 13 we present the end-

to-end speedup versus the speedup of the kernel only, on a

log scale. For reference, we also provide the multi-threaded

implementation as well. We observe that depending on the

benchmark, copying and initialization can have negligible to

60% overhead. Thus, in some cases, our end-to-end speedup

is a fraction of the peak kernel speedup. This is in part due to

the size of the working sets, and even the CPU suffers from

reduced end-to-end performance due to it. FReaC Cache still

manages to outperform the CPU and even the FPGAs. Note that

despite the massive bandwidth of the LLC and initializing data

directly in the buffers, we are affected by memory initialization

delays. However, off-chip accelerators like the ZCU102 and

the U96 require a full copy over much slower channels, after

initialization is completed, adding even more overhead. Thus,

FReaC Cache provides cost-effective, energy-efficient, and

flexible acceleration, with a high-bandwidth and low-latency

path to the user’s working sets, which places FReaC Cache in

a highly unique position.

VI. DISCUSSION

In this section we present a discussion to clarify FReaC

Cache’s motivation, positioning, and potential limitations.

Portability: In this work, we illustrate the ideas and principles

of FreaC Cache by incorporating it into an existing architecture.

While we use the detailed description of the Intel Xeon LLC

provided by Huang et al. [36] as the base of the example

FReac Cache design, FReaC Cache is not limited to Intel LLC

architectures, and does not rely on any special Intel enterprise

features. Instead, our focus is on processors for edge computing

in this work. Changing the underlying cache slice architecture

may affect the number of effective LUTs per cycle, the size

of the micro compute cluster, number of clusters, and number

of clusters grouped across ways, etc. For example, if a cache

way is comprised of twice as many subarrays, we can have

twice as many micro compute clusters, or the same number

of clusters, with twice as many LUTs available per cycle. For

consistency, we used the architecture described by Huang et

al. [36] throughout this paper. Total memory capacity only

limits scratchpads sizes and the number of configurations we

can store, but not performance.

FPGA-Based Architectures: FReaC Cache is not a new

FPGA architecture. Rather, it is a highly cost-effective and

power-efficient solution for edge scenarios, where small

throughput or memory-bandwidth intensive kernels can be

occasionally offloaded. Rather than re-designing reconfigurable
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Fig. 12. Relative Speedup, Power, and Perf/Watt, versus number of LLC slices. Data is shown on a log scale.

Fig. 13. End-to-end versus kernel speedup.Data is shown on a log scale.

computing logic, our focus is on the best way to reconfigure

the LLC and convert it into a customized accelerator that

can leveraging near-memory computing. It is not designed to

handle general-purpose reconfigurable computing or provide

glue logic as typically targeted by generic FPGA devices. While

we do use LUTs, like an FPGA, our design and organization

is very different from an FPGA, and we do not consider

many features of generic FPGAs, including embedded BRAM,

rich FF-based control logic, high I/O capabilities, multi-clock

domains, etc. Thus, FReaC Cache is not the perfect solution

for every application. Where the application is well understood

and mission-critical, an FPGA might be a better choice. For

example, circuits with large and complex control circuits would

be better suited to FPGAs, where the immediate access to

thousands of LUTs is more critical. However, FReaC Cache

has a significant area advantage over FPGAs as: (1) LLC

subarrays occupy the majority of the area, and the additional

logic has area fractional overheads, and (2) 80% of FPGA

area is spent on routing structures and their configuration

bits [41], which FReaC cache avoids. Also, FPGAs have

a limited configuration bandwidth of just 400MB/s4. FReaC

Cache configuration is limited by LLC-DRAM bandwidth and

the LLC’s internal bandwidth (10s to 100s of GB/s).

Alternative Near and In-Cache computing approaches:
We first consider Compute Caches [21], in which the authors

propose leveraging bit-line computing to achieve vector com-

putation. Due to the nature of the computation, this approach

is limited by the pitch of the sub-arrays, and hence the authors

are limited to a simple set of bit operations— AND, OR,

432bit CAP port and 200MHz on Xilinx Ultrascale+ FPGAs [59].
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XOR, copy, and compares— which are effective for the data

manipulation domain that the authors target, such as string

matching, bitmap indexing etc. Crucially, this approach requires

significant redesign of the cache and sub-arrays and adds new

ISA instructions, which add significant design and verification

costs. Also, operands must be placed for sufficient locality

in order to perform in-situ processing. The esoteric nature of

computation, ISA, benchmarks, and simulation infrastructure in

Compute Cache makes it hard to perform an apples-to-apples

comparison with FReaC Cache. However, we note that FReaC

Cache is much less intrusive. All new logic is placed outside

the sub-arrays, existing busses are re-used, and no custom ISAs

are used. Thus, we minimize the impact on area, timing, energy,

and design of the LLC and the cores. Most importantly, we

are not limited to bit-level operations or a restricted domain

of applications. While FReaC Cache is general purpose, it is

best suited for when the host needs acceleration of memory-

bound computational kernels. Where Compute Cache offers

average speedups of 1.9X on data-manipulation workloads,

FReaC Cache demonstrated an average speedup of 3X across

diverse workloads.

Next, we consider near-cache computation, such as

BSSync [60], that places computation near the cache, rather

than inside the arrays. Instead of placing ALUs in the LLC and

adding new ISA instructions, we consider placing lightweight

embedded cores (EC), such as an ARM A7, in the LLC. Like

FReaC Cache, this provides similar general-purpose capabilities,

independent operation from the host cores, and communication

between the accelerator cores and host cores can still be done

via LD/STs. Each A7 core has an area of about 0.49mm2 [61],

[62], which is similar to the per-slice overhead of FReaC Cache.

Thus, we consider two scenarios: (1) iso-area, where one EC

is placed per slice, and (2) two ECs per slice. These provide a

total of eight and sixteen cores in the LLC, respectively. For a

fair comparison, we allocate 16 ways of the LLC as scratchpad

for the cores to use. As we can see in Fig.14, the FReaC Cache

based accelerator’s customized circuits and effective memory

bandwidth utilization enable it to significantly outperform the

iso-area 8 EC solution by an average of 4X, and the 16 EC

setup by an average of 2X. Thus, FReaC Cache is significantly

more area and compute efficient than such near-cache solutions.

Note that speedup in Fig.14 is shown relative to a single A15

thread, and the figure includes the performance of all eight

A15 cores.

Interference with Host Performance: Since a part of the

LLC is dedicated to computation, there is a potential trade-off

between CPU and the accelerator performance in FReaC Cache.

The solution depends on the application, and whether the CPU

and accelerator work cooperatively. The problem, however,

is similar to cache-interference [63]–[69] and performance

isolation problems seen in chip multi-processors, and multi-

tenant cloud scenarios [70]–[72]. In particular, prior work shows

that partitioning the LLC can be an effective solution in such

mixed-workload and multi-application scenarios. Dedicating a

portion of the LLC to accelerators for a process has an effect

on the performance of other running processes similar to that

Fig. 14. Kernel speedup for 16 and 8 lightweight embedded cores (EC) in
the LLC, versus 8 slices of FReaC Cache accelerators and the 8 cores of the
host A15 core. Data is shown on a log scale.

of dedicating a partition of the LLC to that process. A better

understanding of how much cache to allocate for compute

requires a detailed study to clearly define the level of multi-

tenancy and the interactions among concurrent processes, and

previous work on cache QoS and interference provides a good

foundation for this.

As a first-order analysis, we consider two groups of applica-

tions: {AES, NW, STN2, and STN3} and {CONV, FC, KMP,

and SRT}. Each group contains applications with a mix of

compute and memory bound kernels, as well as logic/branch

heavy characteristics. We then consider two scenarios - 1MB

and 4MB of the LLC is retained for caching, while the

remainder is used to accelerate one of the applications in

the group. The remaining three applications are allocated two

CPU threads, each. Fig. 15 presents our analysis, and all data

is normalized to a single threaded baseline, as in the previous

figures. Since three applications, out of the group of four, run

on the CPU complex, each application will run three times in

total5. Thus, we consider an average of the three run times, per

LLC capacity. Our study reveals two key points: First, we note

that the benchmarks do not exhibit sensitivity to the total LLC

capacity. This is primarily due to the fact that the core’s L1

and L2 caches are capable of holding the per-thread working

set. Our benchmarks run in a batched and data-parallel fashion.

So, while the total application working set can be up to 32MB,

which is greater than the LLC capacity, the per-thread working

set (one element of the batch) does not exceed 128KB. Second,
we see that allocating more LLC resources to acceleration

results in improved performance for the accelerator. This is

expected behavior. However, we note that this is largely related

to how many ways can be allocated as scratchpad space, in

order for the accelerators to function. Thus, we observe that

for our given set of benchmarks, allocating up to 90% of

the LLC (9MB) to computation/scratchpad to accelerate one

application does not hurt the performance of the remaining

three applications, as the remaining 1MB is sufficient to back

up the per-thread working sets in the L1 and L2 caches. Here,

we see that the FReaC Cache based accelerator can provide

between 1.8X and 9X of speedup over its CPU run. Note

5For example, CONV runs in the following grouping: {CONV, FC, KMP},
{CONV, FC, SRT}, {CONV, KMP, SRT}.
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Fig. 15. Cache interference study. Speedup over a single thread under varying
shared LLC capacity with concurrently running applications. Data is presented
for application running either on 2 CPU cores or an accelerator, with either
1MB or 4MB of the LLC retained. Data is shown on a log scale.

that, whereas in Fig. 12, 13, and 14 we considered up to eight

threads of the host CPU per application, here each application

is restricted to only two threads while the accelerators leverage

all eight slices of the LLC.

Thus, in such a scenario, offloading computational or

memory limited applications to the LLC would provide the

best overall performance, and would have limited impact on

the CPU cores. Should one or more applications be sensitive

to LLC capacity, then the user would need to scale back

the LLC allocation devoted to computation and/or consider

partitioning and allocating the LLC to specific applications [64]–

[68]. As our results show, FReaC Cache is still able to deliver

acceleration with just 60% of the LLC (6MB). Reducing the

amount of LLC allocated for computation, would provide

proportional reduction in acceleration. Thus, when possible,

FReaC Cache transforms surplus LLC capacity into compute,

providing energy-efficient, customized, and cheap acceleration.

VII. RELATED WORK

There have been several recent attempts at Processing in

Memory (PIM) [22]–[26], [28], [29]. One strategy towards

PIM is to modify the DRAM subarray architecture to enable

computation or acceleration within the memory array [24],

[25]. Seshadri et al. [25] [24] proposed modifications to the

DRAM subarray architectures to enable data copy and bitwise

AND and OR operations. Such architectures take advantage of

the high bandwidth and low data transfer cost provided by the

through silicon vias (TSVs), and do not affect DRAM densities.

However, these systems run the risk of breaking coherence,

and are expensive. In contrast, FReaC Cache is cost-effective,

and the LLC is already the point of coherence in modern

multi-core CPUs. In addition, the reconfigurable fabric is not

limited to any subset of operations. Li et al. [22] proposed a

reconfigurable accelerator architecture by modifying the sense

amplifiers in DRAM to support Boolean algebra acceleration.

This approach is flexible but requires several changes in the

DRAM architecture.

In DRAF [31], the authors explored the idea of a recon-

figurable architecture that uses DRAM for implementing an

FPGA, in order to provide higher density and lower power.

They leverage the large DRAM capacity to support multiple

configurations, and the focus is not on providing in-cache

or near-memory computing. In contrast, FReaC Cache is not

looking to build a new FPGA architecture. Rather, we focus

on utilizing logic folding to pack a large amount of logic

into existing SRAM arrays in the LLC. This enables us to

aggressively reconfigure the compute clusters to achieve the

illusion of a larger FPGA and thus provide cheap and easy

processing near data. Another similar direction for building

reconfigurable architectures in memory leverages CGRA-like

architectures [26], [28]. Gao et al. [26] proposed Heterogeneous

Reconfigurable Logic (HRL) that resembles both FPGA and

CGRA. While this approach targets PIM/NMA, it is a more

specialized solution, looking at CGRAs stacked with DRAMs.

Finally, FReaC Cache and Piperench [73] have some

similarities in that they try to leverage reconfiguration to cope

with limited resources. In FReaC Cache, we perform fine-

grained reconfiguration at a gate (LUT) level and focus on

realizing any circuit in a limited area. In contrast, Piperench

uses a PE-based architecture, and is focused on more pipelined

and compute styled workloads. FReaC Cache is more tightly

integrated into the memory hierarchy and more area-efficient.

VIII. CONCLUSION

In this work we presented a novel architecture, FReaC

Cache, that leverages the existing subarrays of the LLC

and that, without changing the sub-arrays, is able to create

dense reconfigurable computing clusters. FReaC Cache can

be implemented with minimal overheads of 3.5% to 15.3% in

area, and shows average speedups of 3X, and average Perf/W

improvements of 6.1X over an edge-class multi-core processor

when 90% of the LLC is consumed for acceleration. We

also demonstrated FReaC Cache’s competitive advantage over

modern FPGAs, where FReaC Cache is much more area and

power efficient. Finally, we acknowledge that using the LLC

for computation can degrade cache performance, but certain

applications do not use up the entire LLC. By converting the

LLC for computation, we achieve two goals: (1) avoidance of

wasted LLC capacity, and (2) near data computation. Hence

FReaC Cache provides a cost- and power-efficient solution for

acceleration in edge devices.
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