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ABSTRACT

Distributed applications such as key-value stores and databases
avoid frequent writes to secondary storage devices to minimize per-
formance degradation. They provide fault tolerance by replicating
variables in the memories of different nodes, and using data consis-
tency protocols to ensure consistency across replicas. Unfortunately,
the reduced data durability guarantees provided can cause data loss
or slow data recovery. In this environment, non-volatile memory
(NVM) offers the ability to attain both high performance and data
durability in distributed applications. However, it is unclear how to
tie NVM memory persistency models to the existing data consis-
tency frameworks, and what are the durability guarantees that the
combination will offer to distributed applications.

In this paper, we propose the concept of Distributed Data Persis-
tency (DDP) model, which is the binding of the memory persistency
model with the data consistency model in a distributed system. We
reason about the interaction between consistency and persistency
by using the concepts of Visibility Point and Durability Point. We
design low-latency distributed protocols for DDP models that com-
bine five consistency models with five persistency models. For
the resulting DDP models, we investigate the trade-offs between
performance, durability, and intuition provided to the programmer.
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1 INTRODUCTION

Over the past decades, distributed storage systems such as key-
value stores and transactional databases have become a core com-
ponent of the cloud infrastructure [12, 13, 19, 43, 52, 71]. To meet
ever-increasing performance requirements, these distributed appli-
cations typically avoid frequent accesses to slow storage devices
such as solid-state drives (SSDs). This is because an access to such
devices can take tens of microseconds. Instead, many applications
store data in main memory and provide fault tolerance by making
replicas (i.e., copies) of variables in other nodes’ memories.

These replicas are managed by the runtime system using a data
consistency model. There are many different consistency models in
use [69], which differ in their strength. Strong consistency models
strive to ensure that reading different replicas in different nodes re-
turns similar, largely up-to-date versions of the variable. In contrast,
weak models permit reads to different replicas to return inconsis-
tent, sometimes stale versions. Commercial applications support
a variety of models—e.g., Apache’s ZooKeeper [5, 27] supports
the strong Linearizable consistency, while Google’s Bigtable [12]
provides the weak Eventual consistency.

Unfortunately, due to the reduced support for data durability
in these environments, distributed applications can suffer from
data loss or slow data recovery. For example, a Facebook key-value
store cluster needs hours to recover using remote data replicas, and
days to recover using a backend storage [49, 79]. To make matters
worse, a failure of the entire system can cause the permanent loss
of in-memory state [22, 79].

The recent arrival of non-volatile memory (NVM) [3, 29, 54]
offers a promising approach to help distributed applications attain
both high performance and data persistence. Indeed, NVM can
provide data durability in about 100-400 ns [31, 55, 72]. This is faster
than a network round trip in data centers with high-performance
interconnects such as InfiniBand [2, 8, 45, 47, 78].

To facilitate the use of NVM, researchers have developed a frame-
work of data persistency models for a single machine with hardware-
managed cache hierarchies (e.g., [23, 53]). These models vary in
how eagerly they persist writes to NVM. For example, Strict persis-
tency requires that a variable be persisted as soon as it is updated,
while Epoch persistency only requires that updated variables be
persisted at certain program locations.


https://doi.org/10.1145/3466752.3480060
https://doi.org/10.1145/3466752.3480060

MICRO 21, October 18-22, 2021, Virtual Event, Greece

As we use NVM in distributed applications, we have to carefully
manage both the consistency and the persistency of the data. Al-
though distributed data consistency has been well studied (e.g., [4, 7,
16, 33, 38, 51, 64, 69, 71]), it has almost always been used in systems
which, at best, use slow storage devices for durability [22, 48, 74].
Hence, it is unclear how to best incorporate the NVM memory per-
sistency models into these data consistency frameworks. In fact, it
is unclear how these two classes of models interact with each other,
and how their combination impacts data durability, performance,
and programmer intuition in applications.

This paper addresses these limitations. We introduce the concept
of Distributed Data Persistency (DDP) model, which is the binding
of the memory persistency model with the data consistency model
in a distributed system. To reason about the interaction between
data consistency and memory persistency, we use the concepts of
Visibility Point and Durability Point of an update. The former is
when the update is visible for consumption, and is specified by the
consistency model; the latter is when the update is durable, and is
specified by the persistency model.

To understand the tradeoffs, we consider five consistency models
(Linearizable, Read-Enforced, Transactional, Causal, and Eventual),
and five persistency models (Synchronous, Strict, Read-Enforced,
Scope, and Eventual), pair-wise combine them, and design a low-
latency distributed protocol for each of the resulting DDP models.
Using these protocols, we investigate the trade-offs that DDP mod-
els offer in terms of performance, durability, intuition provided to
the programmer, programmability, and implementability.

Our analysis shows that different DDP models deliver substan-
tially different performance—e.g., one model delivers a 3.3x higher
throughput than another for 100 clients. However, any fair com-
parison between the models has to consider other dimensions as
well, such as durability and intuitiveness. In our analysis, we find
that, typically, latency-sensitive applications that can tolerate some
data staleness work best with DDP models that combine weak con-
sistency with strong persistency. On the other hand, consistency-
sensitive applications benefit from stricter consistency and relaxed
persistency. For a broad class of applications, an intermediate model
that combines Causal consistency with Synchronous persistency
appears to be a good choice.

Overall, this paper makes the following contributions:

o The concept of Distributed Data Persistency (DDP) model, which
integrates a memory persistency model with a data consistency
model in distributed systems. To reason about DDPs, we use the in-
teraction between the Visibility and Durability points of an update.

o The design of novel, low-latency distributed protocols for many
DDP models. These protocols are tailored to contemporary hard-
ware, which provides low-latency, high-bandwidth network and
storage through RDMA and NVM.

e A thorough trade-off comparison of different DDP models, in
terms of performance, durability, intuitiveness, programmability,
and implementability.

e A performance evaluation of different DDP models using dis-
tributed applications.

Kokolis, et al.

2 BACKGROUND
2.1 Data Consistency Models

To provide fault tolerance and performance, distributed computing
applications replicate variables in the volatile memory hierarchy
of multiple nodes. The replicas of a variable in different nodes
may be read and updated concurrently by different processes. The
consistency model of a system defines the requirements and guar-
antees of what data values can processes read. Many consistency
models exist, as described in the distributed-computing literature
(e.g.[4,7,38,69]). Typically, there is a performance vs. data staleness
trade-off: strict models require writes to update the replicas very
soon, while weaker models sacrifice this requirement for higher
performance. Next, we describe several models.

Linearizable Consistency or Linearizability. Linearizable con-
sistency is the strongest consistency model for distributed systems.
It requires that all writes to all variables be seen by all processes in
the same order and, additionally, that all reads and writes be ordered
by their timestamps [18, 30, 69]. This model is highly intuitive but
may deliver low performance.

Causal Consistency. In this model, accesses are partially ordered
according to the happens-before relationship. Specifically, two ac-
cesses within the same thread are ordered based on program order.
Moreover, a read from a thread that obtains a value written by a
write from another thread is ordered after the write. Further, this
relation is built transitively. In this model, a thread can observe a
write w only after it observes every previous write in w's happens-
before history. Note that writes do not need to be applied instantly
and, therefore, reads can return stale values. Replicas only need to
reflect causally-related writes in order.

Eventual Consistency. In this model, writes are propagated lazily.
The model only guarantees that all the replicas will eventually see
all the writes. This model provides very weak consistency guar-
antees, and processes might read unexpected values. However, it
offers great performance.

Transactional Consistency. Many contemporary databases or-
ganize their operations in transactions (Xactions). While different
variations of this model exist, this paper uses a simple one. The
writes in a Xaction only need to be propagated to all the replicas
by the end of the Xaction. If the Xaction fails, none of the updates
are performed. Moreover, the operations within a Xaction can only
see the effects of other Xactions that have completed prior to it.
Read-Enforced Consistency. In this paper, we introduce this
new model, which is slightly weaker than Linearizable consistency.
1t is inspired by the Read-Enforced durability of Ganesan et al. [22].
In this model, a write only needs to be visible to all the replicas at
the point when a subsequent read tries to read any of the replicas.
Compared to linearizability, this model allows faster completion of
writes at the potential expense of delaying reads.

Current systems support most of these models, although lineariz-
ability is often eschewed for performance reasons. The availability
and performance of Causal consistency make it an attractive choice
for many applications [7, 38, 44, 69], such as online services. Even-
tual consistency is one of the most widely deployed [19, 69, 70]
because of its performance.
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2.2 Memory Persistency Models

The availability of NVM has led to the creation of multiple memory
persistency models for single-server platforms. These models differ
in how eagerly writes are persisted to NVM [53]. The models range
from a strict one, where a write is immediately persisted to NVM,
to relaxed ones, where writes are persisted lazily under certain
conditions. These models need to be adapted to work in a distributed
system, where nodes use asynchronous messages to coordinate.

In this paper, we build on these models and on more traditional
durability protocols that distributed systems have used to persist
data to SSDs (e.g., [22, 48, 74]). In this section, we describe several
persistency models.
Synchronous Persistency. In this paper, we introduce this new
model as the adaptation of the Strict memory persistency model
from single-server systems [53] to distributed systems. In this
model, when a replica is updated in volatile memory, it is imme-
diately persisted to NVM. This model is strict, but the time of the
persist depends on when the replica is updated, which in turn de-
pends on the data consistency model of the system. For this reason,
we call it Synchronous. It is the most intuitive model.
Read-Enforced Persistency. This model was introduced by Gane-
san et al. [22]. It is more relaxed than Synchronous. Replicas do not
need to be persisted when they are updated. Instead, the require-
ment is that all the updated replicas are persisted before any of
them is read. This model guarantees that any value that has been
read is also recoverable. However, there is no guarantee for updates
that have not yet been read by processes—such updates may be lost
in a crash or program failure.
Eventual Persistency. In the Eventual persistency model, persist
operations are performed lazily. They happen whenever it is pos-
sible, without any concern about the order of persists. No other
guarantees are provided. In case of a volatile storage failure, an
arbitrary number of updates may be lost.
Scope Persistency. In the context of NVM persistence, there are
proposals that persist a set of writes as a group. They include
Strand [23, 53] and Epoch persistency [32, 53]. In this paper, we
propose a generalized approach where writes belong to Scopes—a
concept reminiscent of Fence Scoping [37]. Every write is aug-
mented with a Scope ID, and the application can invoke a Persist on
a given Scope ID. Writes can be persisted in the background, but
the model guarantees that all the writes in a scope are persisted by
the time the Persist call for that scope terminates. The scopes in a
program may be totally ordered, partially ordered, or not ordered
at all, based on their Scope IDs. In our design, we use total order
within a process and no order across processes. In all cases, if there
is a volatile storage failure, the state of all the completed scopes is
recovered, and that of those partially executed is discarded.
Strict Persistency. This is the strictest model. It dictates that a
write should be persisted in the NVM of all the replica nodes by the
time the write completes—possibly even before the replicas in the
volatile memories of the replica nodes receive the update[61, 62].
On a failure of volatile storage, no update is lost. This model is
relatively less interesting because of its high strictness.

Most existing systems use a persistency model close to Eventual
persistency. This is because they value performance and do not
want to pay the cost of persisting to SSDs or disks in the critical
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path. Some systems such as Redis [57] give the user a choice of
models, ranging from Eventual-like to more strict. Some systems
provide Synchronous-like persistency, such as LogCabin [39]. Read-
enforced persistency has been recently proposed [22] and, to our
knowledge, it is not used yet.

3 MOTIVATION: IMPACT OF CONSISTENCY
AND PERSISTENCY MODELS

To motivate the importance of understanding how consistency
and persistency interact, we perform a simple experiment. We
take the Odyssey system [68] and implement a strict environment
where both writes to volatile replicas and persists to NVM happen
synchronously (i.e., a client’s write does not return to the client
until all replicas are updated and persisted). We then repeat the
experiments without synchronously persisting to NVM, but still
updating the volatile replicas in the critical path before returning
to the client. Finally, we repeat the experiments without persisting
to NVM or updating the volatile replicas before returning to the
client. For all these experiments, we use a 3-node cluster, and every
variable is replicated in all nodes. Each node has 24 Xeon E5-2687W
cores, and connects to other nodes with Mellanox ConnectX-4 NICs
that perform RDMA over Infiniband. The nodes run client threads
issuing write requests and worker threads processing requests.
These threads execute on separate cores. Table 1 shows the relative
throughput of the three environments.

Table 1: Relative throughput of three environments.

Volatile Updates | NVM Updates | Normalized
in Critical Path? | in Critical Path? | Throughput
Yes Yes 1
Yes No 1.32
No No 4.08

As can be seen from Table 1, the throughput (normalized to the
first environment) is significantly different. A relaxed environment
that completes writes locally without updating or persisting replicas
delivers a 4x higher throughput. Given the large number of con-
sistency and persistency models, we need to develop a framework
to examine the interactions between consistency and persistency
models, and investigate the tradeoffs between the different combi-
nations. These are the goals of the rest of the paper.

Note that writing correct protocols for distributed systems is
complex. For example, the Hermes distributed consistency proto-
col [25, 33] is 16K lines of code (LOC), and ZooKeeper [5, 6, 27] is
294K LOC. Hence, it is important to understand how consistency
and persistency interact and how to systematically design protocols
to support combinations of them.

4 INTEGRATING PERSISTENCY AND
CONSISTENCY IN DISTRIBUTED SYSTEMS

We propose to bind memory persistency models with data con-
sistency models in distributed platforms, creating what we call
Distributed Data Persistency (DDP) models. To understand our ap-
proach, consider a distributed computer (e.g., a datacenter) where
each node has a volatile memory hierarchy and some NVM. This
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is the architecture we will use in this paper. Figure 1 shows two
nodes of such a platform.

Node-2

Private Private
Caches | | Caches

Shared LLC
T

MC: Memory Controller
NIC: Network Interface Card

Figure 1: Distributed computer with NVM.

When an application such as a key-value store or a database runs
on this platform, the runtime typically makes copies of keys (or
records) in the volatile memory hierarchy of multiple nodes—e.g.,
there are N replicas of every key. With today’s Data Direct I/O
(DDIO) technology [21, 28], the hardware makes the copies in the
Last Level Caches (LLC) of the nodes. Such replication is performed
for fault tolerance and performance, and may be later followed by
the persistence to durable storage—NVM in our case.

In such a system, we decouple data consistency models from
memory persistency models by using the concepts of visibility
and durability. The consistency model is concerned with when to
propagate the update of a key to the key’s replicas in the volatile
hierarchies of nodes; the persistency model is concerned with when
to persist the update to the NVMs of nodes. To be specific:

The consistency model defines the Visibility Point (VP). The VP
of an update with respect to a node is when the update becomes
available for consumption at that node. The persistency model
defines the Durability Point (DP). The DP of an update is when
the update is made durable (in the necessary number of nodes,
as required by the recovery system) and, hence, cannot be wiped
out by a failure.

Broadly speaking, it helps to think as follows. Consistency mod-
els are more or less strict depending on how eagerly they propagate
the update of a key to the volatile memory hierarchy of the nodes
with replicas. Persistency models are more or less strict depending
on how eagerly they persist the update to the NVMs of the nodes
with replicas. This separation of concerns provides an intuitive way
to plug the framework of persistency models into the framework
of consistency models, creating what we call DDP models.

Table 2 shows the VP and DP of an update in the different con-
sistency and persistency models, respectively, that we consider in
this paper. The models are listed from more to less strict. In the
following, for a given variable, we call “replica nodes” all the nodes
that contain a copy of the variable.

Consistency Models. In the Linearizable model, the VP of an
update with respect to all replica nodes is when the update takes
place. A client’s write in a node is not completed until the volatile
memories of all the replica nodes have been updated.

In Read-Enforced consistency, the VP of an update with respect
to all replica nodes is sometime before the update is read by a node.

Kokolis, et al.

Table 2: Visiblity and durability points of an update for dif-
ferent data consistency and memory persistency models, re-
spectively. “Wrt all/a node(s)” stands for “with respect to
all/a replica node(s)”.

Visibility Point (VP) of an Update H
Linearizable Wrt all nodes: when the update takes place
Read-Enforced | Wrt all nodes: before the update is read

Consistency

Transactional | Wrt all nodes: at the transaction end
Causal Wrt a node: after the VPs wrt the same node of
all the updates in the happens-before history
Eventual Wrt a node: sometime in the future
H Persistency ‘ Durability Point (DP) of an Update H

Strict When the update takes place
Synchronous | At the visibility point of the update
Read-Enforced | Before the update is read

Scope Before or at the scope end
Eventual Sometime in the future

A client’s write completes as soon as the local key is updated; the
update propagates to the replica nodes in the background. However,
a read to any replica will stall until all the replica nodes have been
updated.

In Transactional consistency, the code is annotated with transac-
tions, and the VP of an update with respect to all replica nodes is
at the transaction end. A write completes as soon as the local key
is updated; the update propagates to the replica nodes in the back-
ground. The end-transaction operation stalls until all the writes in
the transaction have updated all the replica nodes.

In Causal consistency, the VP of an update u with respect to a
given replica node is sometime after the VPs with respect to the
same replica node of all the updates U (to any key) that are in u’s
happens-before history. We call the list of U updates the Causal
History (or cauhist) of u.

Finally, in Eventual consistency, the VP of the update with respect
to a given replica node is sometime in the future. The update is
propagated lazily. The model only guarantees that the update will
eventually reach its VPs with respect to the different replica nodes.

Persistency Models. In the Synchronous persistency model, the
DP of an update is at the VP of the update. In other words, when
a volatile replica is updated (according to the consistency model),
the replica is also persisted to NVM.

Table 2 also shows the even stronger but unintuitive Strict persis-
tency, where the DP is when the update takes place. In this model,
briefly mentioned by Talpey [62], when a node writes a key, the
update has to be immediately persisted in the replica nodes, even if
the volatile replicas in such nodes are not updated. In this paper,
we de-emphasize this model.

In Read-Enforced persistency, the DP is before the update is read.
Specifically, a read to any replica will stall until all the replicas have
been persisted to NVM.

In Scope persistency, every update is annotated with a Scope
ID. The DP of an update is before or at the point when execution
reaches the end-of-scope annotation for that Scope ID. When the
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annotation is reached, execution stops until all the writes in the
scope are persisted in the replica nodes.

Finally, in Eventual persistency, the DP of the update is sometime
in the future; the update is persisted lazily in the replica nodes.

Distributed Data Persistency (DDP) Models. We define a DDP
model as the binding of a memory persistency model with a data
consistency model. We represent it as <consistency model, persis-
tency model>.

5 DDP PROTOCOLS FOR MODERN
HARDWARE

Based on the insights from the previous section, we now design
new distributed protocols for several DDP models. We target a
modern data center architecture, where nodes communicate with
low latency with advanced RDMA [2, 17, 45, 50] and use NVM
for persistency. In this setting, where a round trip between nodes
takes single-digit ps, and data persistency can be obtained in a
few-hundred ns, we design protocols that emphasize low latency.
Specifically, we design protocols that have no single leader—i.e., a
client read or write request can be received and processed at any
node. Moreover, on reception of a client’s write, a node broadcasts
messages to all the other replica nodes, instead of sending a message
that sequentially visits all the other replica nodes.

Our designs are based on the linearizable-consistent (no persis-
tency) protocol used by Hermes [33]. Following their terminology,
we call Coordinator the node that receives the client’s read/write
request for a key, and Followers all the other nodes with a replica of
the key. Finally, for simplicity and like in Hermes, we assume that
keys are replicated in all the nodes; reducing the number of replica
nodes does not change the protocols conceptually, but may affect
performance.

Before we describe the design of the DDP protocols, we outline
the protocol operations.

5.1 Overview of the Protocol Operations

Table 3 shows the types of messages in our protocols. The basic
protocol operation can be illustrated with a write in a strict model.
When the coordinator receives a write from the client, it broadcasts
an INV (+data) message to all the followers. This is an invalidation
message that also includes the update. On reception of the mes-
sage, a follower invalidates its current value of the key, sets the
key’s state to transient, and buffers the new key value (data). Then,
it acknowledges the operation with an ACK message back to the
coordinator. When the coordinator has received all the ACKs, it
broadcasts a validation VAL message to all the followers. On recep-
tion, each follower knows that all the followers have been notified,
and sets the key to the new value. As shown in Table 3, our ACKs
and VALs may combine consistency and persistency information
or may only apply to consistency (ACK_c, VAL_c) or persistency
(ACK_p, VAL _p) events.

Causal and Eventual consistency protocols do not use ACK or
VAL because there is no need for global information about when an
update becomes visible. Hence, the coordinator simply sends update
UPD messages with the data. In the case of Causal consistency, UPD
includes the causal history (cauhist) of the write.
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Table 3: Types of messages in our protocols.

‘ ‘ Message
INV (+data)

Explanation ‘ ‘

Invalidates the current value of a key and provides
its updated value (data)
ACK Acknowledges an event

ACK _c¢ Acknowledges a consistency event
ACK _p Acknowledges a persistency event
VAL Marks the termination of an event
VAL _c Marks the termination of a consistency event
VAL_p Marks the termination of a persistency event

UPD (+cauhist) | Provides an updated value for a key plus the causal
history of this update (cauhist)

INITX Informs of the beginning of a transaction
ENDX Informs of the end of a transaction
[PERSIST]s Informs of the end of scope s

[XXX]s [INV]s [ACK _c]s [ACK_p]s [VAL_c]s [VAL_p]s

for scope s

In Transactional consistency, the coordinator also sends begin
and end transaction messages (INITX and ENDX). Finally, under
Scope persistency, all messages are tagged with the scope s they
belong to (e.g., [ACK_c]s). Furthermore, the coordinator also sends
an end-of-scope message ([PERSIST]s) when execution reaches the
end of the scope.

5.2 DDP Models with Synchronous Persistency

Figure 2 shows the timelines of the protocols for the DDP models
that bind Synchronous persistency with various consistency models.
The top row corresponds to the coordinator and the bottom row to
a follower. In each subfigure, the left part shows the requests issued
by a client. The thicker line shows the time during which a persist
operation to NVM takes place. Furthermore, a down arrow means
that the write updates the local node’s cache. Finally, a two-headed
arrow means that the message is sent to or received from multiple
followers.

<Linearizable, Synchronous>. The coordinator is shown in (a)
and a follower in (b). When the coordinator receives a write from a
client, it updates its local cache and sends an INV (+data) to all the
followers. On reception of INV (+data), a follower updates its local
LLC and, to satisfy Synchronous persistency, persists the update
to NVM before retuning an ACK to the coordinator. On reception
of all the ACKSs, the coordinator finishes persisting the update (to
satisfy Synchronous persistency) before broadcasting a VAL to all
the followers to indicate the operation is complete. Only then can
the coordinator tell the client that the write is complete: all nodes
have updated their volatile replica (required by Linearizable consis-
tency) and have persisted it in their NVM (required by Synchronous
persistency). Overall, we see that writes have high latency in this
DDP model.

Consider now a client read to the same key. The coordinator
cannot process any other request while the write is in progress. A
follower stalls the read until all replicas have been updated (required
by Linearizable consistency) and persisted (required by Synchro-
nous persistency). Such condition is only guaranteed when VAL is
received. Overall, reads also have high latency.
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Client Coordinator Client Coordinator
WR*f—. vy Update WR vy Update
Local Cache WR Local Cache
WR Latency
. Latency INV(+data) END =——| INV(+data)
'E RD Stall A
[«s—— ACK RD [+ ACK
Still
END VAL - —™> VAL
(a) <Linearizable, Synchronous> (c) <Read-Enforced, Synchronous>
Client Follower
v INV(+data)
Update Local LLC
E Same as (b)
= —ACK
~<~—— VAL

(b) <Linearizable, Synchronous>

(d) <Read-Enforced, Synchronous>
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Client Coordinator Client Coordinator
WR vy Update WR vy Update
WR Local Cache WR Local Cache
Latency Latency
END <—§—=UPD END =-—

(+cauhist)

RD ——————* RD —————*

UPD

(e) <Causal, Synchronous> (g) <Eventual, Synchronous>

Client Follower
Client Follower

UPD d2(+cauhist)

v UPD dl(+cauhist)
di Update Local LLC d1 RD

'Y Update Local LLC d2

RD
Return latest version | 42

in persistent mem (d1

vy UPD
Update

Local LLC

Return latest version
in persistent memory

(f) <Causal, Synchronous> (h) <Eventual, Synchronous>

Figure 2: Timelines of the protocols for the DDP models that bind Synchronous persistency with various consistency models.
The top row corresponds to the coordinator and the bottom one to a follower.

<Read-Enforced, Synchronous>. The coordinator is shown in
(c) and a follower in (d). When the coordinator receives a write, it
updates its local cache and sends an INV (+data) to all the followers.
Read-Enforced consistency does not require the volatile replicas
to be updated before completing the write—only when one of the
replicas is read. Hence, the coordinator immediately tells the client
that the write is complete, while the local persist and the remote
updates and persists are in progress. In this DDP model, writes
have low latency. In the follower, the operation is the same as in (b):
once the LLC is updated and the update is persisted (required by
Synchronous persistency), an ACK is sent. The coordinator collects
all ACKs and finishes its persist. Then, it sends a VAL that indicates
that all replicas have been updated and persisted.

A client read for the same key can only be serviced by the coordi-
nator after sending VAL, and by a follower after receiving VAL. The
reason is that Read-Enforced consistency requires a read to stall
until all volatile replicas are updated. Moreover, Synchronous per-
sistency requires that, at the same time as the replicas are updated,
they are also persisted. Overall, reads have high latency.

<Causal, Synchronous>. The coordinator is shown in (e) and a
follower in (f). On a write, the coordinator updates the local cache,
sends the UPD with the cauhist of the write to all the followers, and
returns to the client. Causal consistency only requires that a replica
be updated after it has been updated with the updates in the causal
history of the write. Subfigure (f) shows the follower receiving
two updates (UPD d2 and UPD d1) in an order opposite to their
cauhist. In this case, the first one (UPD d2) is buffered. When the
second one (UPD d1) is received, it updates the LLC and, because
of Synchronous persistency, it is persisted right away. Then, the
first update is performed on the LLC and is persisted.

At any time, any read for the key that arrives at the coordinator
or a follower proceeds with no stall. This is because Causal consis-
tency places few constraints on when the replicas are updated, and

Synchronous persistency only requires that, when the replica is
updated, it is persisted. However, Synchronous persistency requires
that the read get the latest persisted version, so that the version is
recoverable on a failure. In our example in the follower, it is version
d1. Overall, in this DDP model, both writes and reads have low
latency.

<Eventual, Synchronous>. The coordinator is shown in (g) and
a follower in (h). Using Eventual consistency makes this DDP model
even more relaxed. Indeed, Eventual consistency adds no cauhist
to the UPD messages. Updates are performed on the LLC of the
follower in the order they arrive—but, because of Synchronous per-
sistency, they are immediately persisted when they do. We denote
the relaxed nature of Eventual consistency by delaying the sending
of UPD. Overall, both writes and reads have low latency.

5.3 DDP Models with Read-Enforced
Persistency

For brevity, we only discuss protocols for two DDP models that bind
Read-Enforced persistency with consistency models: <Linearizable,
Read-Enforced> and <Causal, Read-Enforced> (Figure 3).

<Linearizable, Read-Enforced>. The coordinator is shown in (a)
and a follower in (b). This protocol decouples ACKs for consistency
(ACK_c) from those for persistency (ACK_p). When the coordinator
receives a write, it updates its local cache and sends INV (+data) to
all followers. On reception of INV (+data), a follower updates its
local LLC and immediately sends an ACK_c. When the coordinator
receives all ACK_c, it knows that all the replicas have been up-
dated. This is the condition that Linearizable consistency requires
to tell the client that the write terminated. Read-Enforced persis-
tency does not pose any condition on write termination. Overall,
writes still have substantial latency, but less than in <Linearizable,
Synchronous>.
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followers and persisted the event locally. At this point, all replica
nodes are aware of the transaction. From then on, a write causes
the coordinator to update the local cache, send the INV (+data)
and immediately acknowledge to the client without waiting for
the ACKs from the followers. Hence, a write is fast. The followers
send their ACK after updating their LLCs, without waiting for the
update to be persisted to NVM.

Client Coordinator
Init Xaclinnj—-lj Update Local Cache Client Follower
Init Xaction Latency f—= INITX INITX
END ACK Update Local LLC
ACK
WR v Update Local Cache
WR Latency
END INV (+data) <y INV (+data)
e ACK Update Local LLC
2 = ACK
£
RD

Read latest visible
(volatile) version

RD ———————*
Read latest visible]
(volatile) version

Figure 3: Timelines of the protocols for the DDP models that
bind Read-Enforced persistency with Linearizable ((a) and
(b)) or Causal ((c) and (d)) consistency.

A read in either the coordinator or follower, however, has to
stall until all the replicas have persisted to NVM—as required by
Read-Enforced persistency. Therefore, after a follower persists the
update, it sends an ACK_p to the coordinator. When the coordina-
tor receives all ACK_p messages and persists its version, it sends
VAL_p. Because of Read-Enforced persistency, a read stalls in the
coordinator until VAL_p is sent. Further, a read stalls in a follower
until VAL _p is received. Hence, reads have high latency in this DDP
model.

<Causal, Read-Enforced>. The coordinator is shown in (c) and
a follower in (d). The operation of a write is the same as in <Causal,
Synchronous> because the change in persistency model does not
impact the actions on a write. However, reads now may have to
stall longer. The reason is that, while Synchronous persistency only
required that a read obtained a persisted version of the key, Read-
Enforced persistency prevents a read to proceed unless the latest
visible version of the key is persisted. Hence, as shown in (c), a
read in the coordinator stalls until the update is persisted (thick
line). Further, as shown in (d), a read in the follower stalls until the
follower’s latest visible version persists—i.e., the read waits until d2
persists and then reads it. Overall, in this DDP model, writes have
low latency but reads do not.

5.4 <Transactional, Synchronous> DDP Model

To understand the protocol of a DDP model that includes Transac-
tional consistency, we consider <Transactional, Synchronous> in
Figure 4 (coordinator in (a) and follower in (b)). The client performs
a transaction by issuing an Init Xaction request followed by multi-
ple writes and reads, and then an End Xaction request. When the
coordinator receives Init Xaction, it sends an INITX to all the follow-
ers, which persist the event (because of Synchronous persistency)
and send an ACK to the coordinator. The Init Xaction request only
completes when the coordinator has received the ACK from all the

End Xactiol ry UpdateLocal Cache ENDX
Update Local LLC
End Xaction Latenc; ENDX ACK
ACK
END VAL [ VAL

(a) <Transactional, Synchronous> (b) <Transactional, Synchronous>

Figure 4: Protocol timeline for the DDP model that binds
Synchronous persistency with Transactional consistency.
The figure shows the coordinator (a) and a follower (b).

On reception of the End Xaction request, the coordinator broad-
casts an ENDX to the followers. A follower, before returning an
ACK for ENDX, must complete all the updates in the transaction
to both the volatile LLC (as required by Transactional consistency)
and to the NVM (as required by Synchronous persistency). When
the coordinator has received all the ACKs and completed all its
updates in the transaction to both the volatile caches and the NVM,
it acknowledges the End Xaction.

During the transaction, a read in the coordinator or followers is
fast. It does not wait; it simply reads the latest visible version—i.e.,
the latest one in the volatile memory hierarchy.

On top of this protocol, there is additional software infrastruc-
ture that detects and handles transactional conflicts. Specifically, at
every read and write at the coordinator or followers, the address to
be accessed is compared to those of all the reads and writes in the
currently-active transactions. If a conflict is detected, different ac-
tions can be taken, such as transaction squashes or stalls, depending
on the flavor of transactional model supported.

5.5 <Linearizable, Scope> DDP Model

Finally, to understand the protocol of a DDP model that binds Scope
persistency with a consistency model, we consider <Linearizable,
Scope> in Figure 5 (coordinator in (a) and follower in (b)). Recall
that, in Scope persistency, writes, persist operations, and messages
are tagged with a scope ID s.

When the coordinator receives a write, it updates its local cache
and broadcasts an INV (+data) to all followers. Each follower must
update its volatile replica before returning an ACK_c. When the
coordinator has received all the ACK_c messages, it broadcasts a
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(a) <Linearizable, Scope> (b) <Linearizable, Scope>

Figure 5: Timeline of the protocol for the DDP model that
binds Scope persistency with Linearizable consistency. The
figure shows the coordinator (a) and a follower (b).

VAL _c. At this point, since all the volatile replicas have been updated
(as required by Linearizable consistency), the write is acknowledged.
Writes are relatively slow because of Linearizable consistency.

When the coordinator receives a persist request for this scope, it
broadcasts a PERSIST to all the followers. The latter persist to NVM
all the updates in the scope and respond with ACK_p. When the
coordinator has collected all the ACK_p and locally persisted all
the updates in the scope, it broadcasts VAL_p. Since now the scope
is fully persisted (as required by Scope persistency), the client is
acknowledged.

A read in the coordinator or the followers is typically fast. It
reads the latest visible version in the volatile hierarchy. However,
sometimes it has to stall. Consider the read in Figure 5(b). There is a
new version in the follower but, because of Linearizable consistency,
the read cannot read it until VAL_c is received—i.e., when all the
followers have this version as well.

6 TRADEOFFS BETWEEN DDP MODELS

The different DDP models provide different tradeoffs between dura-
bility, performance, intuition provided to the programmer, pro-
grammability, and implementability. Durability refers to how ca-
pable the system is to retain a consistent state after a failure that
causes the loss of some or all the volatile state. Performance de-
pends on three main factors: the speed of reads, the speed of writes,
and the volume of traffic generated.

Programmer intuition is determined by what values a read can
return. In particular, we consider whether the system supports
monotonic reads and/or non-stale reads [22]. A system supports
monotonic reads if, given two system-wide reads to the same vari-
able, the later read always provides the same or a later version of
the variable that the earlier read provided. A system fails to provide
non-stale reads if a read that follows a write system-wide fails to
provide the value of the write. The most obvious case is when a
failure between the write and the read causes the loss of the written
version. Intuitive systems support both monotonic and non-stale
reads.

Programmability refers to the developer’s ease of writing the ap-
plication. For example, if the developer has to include annotations
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for transactions or scopes, programmability is hurt. Finally, imple-
mentability refers to the simplicity of the algorithms in the model.
For example, keeping track of the happens-before histories of writes
in the Causal consistency model complicates the implementation.

6.1 Specific DDP Model Analysis

Table 4 compares ten representative DDP models: five that bind
Synchronous persistency, two that bind Read-Enforced persistency,
one that binds Eventual persistency, and two that bind Scope persis-
tency to consistency models. We consider durability, performance,
programmer intuition, programmability, and implementability. In
the table, upward, flat, and downward arrows mean high, medium
and low; crosses mean no and tick marks yes.

6.1.1 Combinations with Synchronous Persistency. Row 1 shows
the very strict <Linearizable, Synchronous>. Durability is high
because a write does not return until it is persisted in all replica
nodes. In terms of performance, writes are not optimized because a
write in the coordinator only returns when all ACKs are received
and the VALs are sent out; reads are not optimized either because
aread in a follower is blocked until the VAL from the coordinator
is received. For these reasons, even though we can say that the
traffic is medium, the overall performance is low. In terms of in-
tuitiveness, this model is highly intuitive because it provides both
monotonic reads and non-stale reads. Finally, both programmability
and implementability are high.

Row 2 shows <Read-Enforced, Synchronous>, which relaxes
consistency by allowing writes to return as soon as the coordinator
sends the INVs. Reads, however, are not optimized and still need to
wait until a prior write to the same address is propagated to all the
replicas and persisted. In this model, durability is medium because,
if a failure occurs between the write and the subsequent read, the
written version may fail to be persisted and be lost. Since writes
are optimized but reads are not, and the traffic is medium, overall
performance is medium. Monotonic reads are guaranteed but not
non-stale reads, due to the failure just described: as the system
recovers from the failure, a read will not return the value produced
by the lost write. Hence, intuitiveness is medium. Programmability
and implementability are high.

Row 3 shows <Transactional, Synchronous>, which is similar to
<Linearizable, Synchronous> except that it operates at the transac-
tion level. It has high durability—completed transactions are never
lost. It optimizes writes through overlapping them inside a transac-
tion, and reads by not stalling them. As a result, although traffic is
high due to transaction begin/end messages, its performance is high.
It provides both monotonic reads and non-stale reads and, hence,
intuitiveness is high. However, programmability is low due to the
need to annotate code with transactions, and implementability is
low due to the need to implement transactions and their conflict
detection and resolution.

Row 4 shows <Causal, Synchronous>, which optimizes both
writes and reads. Neither of them stalls: writes return as soon as the
coordinator sends the updates, and reads return the latest version
in persistent memory. Since the write optimization may result in a
write to be lost in a failure, durability is medium. Both reads and
writes are fast but the traffic is high because each write carries its
cauhist. Still, performance is high. Monotonic reads are guaranteed



Distributed Data Persistency

MICRO 21, October 18-22, 2021, Virtual Event, Greece

Table 4: Comparing different DDP models. “Opt” means optimized.

Performance Programmer Intuition Other
Consistency Persistency Dura- Wr Rd | Traf- | Over- || Monot. | Non | Over- || Program- | Implemen-
Model Model bility || Opt? | Opt? | fic all Rds? | Stale all mability? | tability?
Rds?
1. Linearizable i b 4 X e U v v il il i
2. Read-Enfor. s v X S s (4 b 4 S i i
3. Transactional | Synchronous M v v n M v v i U U
4. Causal o 4 v i i v b 4 S i U
5. Eventual i} 4 v U i X X U i i
6. Linearizable Read-Enfor. o v X i S v b 4 S i i
7. Causal o 4 b 4 i i (4 b 4 S i U
8. Linearizable Eventual U v v U i) X X U n n
9. Linearizable Scope i 4 v i i b 4 b 4 i U U
10. Transactional ) v (4 n n X b ¢ m Ul Ul

because, even if updates arrive at a follower out of order, the system
buffers them and performs them in order based on their cauhist.
However, non-stale reads are unsupported because writes can be
lost to failures. Hence, intuition is medium. Programmability is
high but implementability is low because of the need to buffer and
enforce the cauhists.

Row 5 shows <Eventual, Synchronous>. As it provides practi-
cally no guarantees on when writes update replicas and persist,
its durability is low. It has optimized reads and writes, and low
traffic. Hence, performance is high. However, since neither mono-
tonic reads nor non-stale reads are supported, intuitiveness is low.
Programmability and implementability are high.

6.1.2  Relaxing Persistency. As we relax persistency and go from
<Linearizable, Synchronous> to <Linearizable, Read-Enforced> in
Row 6, we optimize writes by returning before they are persisted,
but not reads. Writes can be lost in a failure. Consequently, durabil-
ity decreases to medium. Despite the higher traffic due to double
ACKs (Figures 3(a)-(b)), performance increases to medium. Further,
since non-stale reads are not guaranteed in a failure, intuitiveness
decreases to medium.

Row 7 shows <Causal, Read-Enforced>, which mostly optimizes
writes over <Linearizable, Synchronous> (Figure 3). Because of
this change, and despite the high traffic, its performance is high.
However, since writes can be lost, durability is medium and non-
stale reads are not supported. As a result, intuitiveness is medium.
Implementability is low because of the need to keep cauhists.

Further relaxing persistency to <Linearizable, Eventual> in Row
8 creates a system with both read and write optimization but neither
monotonic nor non-stale reads. The result is low durability, high
performance, and low intuitiveness.

Finally, we consider Scope persistency. In <Linearizable, Scope>
(Row 9) and <Transactional, Scope> (Row 10), we have systems
with high durability: in a volatile storage failure, the state of all the
completed scopes is recovered, and that of those partially executed
is discarded. Within a scope, writes are optimized because they do
not serialize their persists, and so are reads, which can read before
the scope persists. As a result, despite the higher traffic caused by

scope-persist messages, performance is high. Neither monotonic
reads nor non-stale reads are guaranteed: on a failure, a group of
writes may be discarded after being read because the scope did not
persist. However, intuitiveness is still high because either the whole
scope survives or no part of it does. Finally, both programmability
and implementability are low due to the need to mark and support
scopes. Further, both properties are worse if scopes are combined
with transactions (Row 10).

7 EVALUATION METHODOLOGY

Modeled Architecture. We model the architecture of a distributed
system with 5 servers. Each server is a 20-core multicore with 80
GBs of main memory composed of 64 GBs of NVM and 16 GBs of
DRAM. The architecture parameters are shown in Table 5. Each
core is an out-of-order core with private L1 and L2 caches, and
a shared LLC. A 10% portion of the LLC can be used for direct
cache access with DDIO [21, 28]. The servers’ Network Interface
Card (NIC) supports Remote Direct Memory Access (RDMA), which
enables a server to access the remote memory of other servers.

We use RDMA because it supports low-latency data transfers
across nodes without involving the remote processor. Unfortunately,
current RDMA support is limited, in that an RDMA transaction
provides no guarantees that the data have been successfully per-
sisted in remote NVM. However, recent work has proposed RDMA
extensions that facilitate operations with NVM [26, 61, 65]. In partic-
ular, in our evaluation, we follow SNIA’s proposals [61] and model
RDMA update commands that guarantee that, on acknowledgment,
the remote volatile memory or the remote NVM (depending on the
type of command) has been successfully updated. We also model an
RDMA command that flushes data from a remote volatile memory
to the remote NVM.

We model a high-end NIC with a bandwidth of 200Gb/s [45],
and up to 400 Queue Pairs [73] for scheduling messages. Further,
we model a 1us round-trip latency for a message between two
NICs [2, 45, 78].
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Table 5: Architectural parameters used for evaluation.

H Server Architecture Parameters ‘ ‘

Servers; Clients
Multicore chip
Ld-St queue; ROB

5 servers; 20 clients per server
20 out-of-order cores, 6-issue, 2GHz
92 entries; 192 entries

L1 cache 64KB, 8-way, 2 cycles round trip latency (RT)
L2 cache 512KB, 8-way, 12 cycles RT
LLC cache 2MB/core, 16-way, 38 cycles RT, 10% for DDIO
H Network Parameters ‘ ‘
Network latency 1us RT NIC-to-NIC

Network Bandwidth | 200Gb/s
Queue Pairs Up to 400

H Per-Server Main-Memory Parameters ‘ ‘

Capacity DRAM: 16GB; NVM: 64GB
Channels, Banks DRAM: 4, 8; NVM: 2, 8
Latency DRAM: 100ns read/write RT

NVM: 140ns read, 400ns write RT
1GHz DDR; 64 bits per channel

Freq; Bus width

Modeling Approach. Since we model non-existing, future RDMA
primitives and high-end NICs, and want to do sensitivity anal-
yses of even faster NICs and networks, we model performance
using simulations. We use the SST simulator [58], Pin [42], and the
DRAMSim2 memory simulator [59]. To model NVM, we modified
the DRAMSim2 timing parameters and disabled refreshes. With
Pin, we collect instruction traces for N cores processing read and
write client requests to our key-value stores locally. Traces have no
timing information. Then, we take these traces and simulate N cores
in our distributed architecture. Timing is dynamically determined
by the simulator. The simulation inserts all the protocol messages
for correct operation of individual reads and writes.

With our simulation-based approach, we build an infrastructure
that can be easily parameterized with new technology advance-
ments and be used to perform sensistivity analyses.
Configurations and applications. We model the protocols for
the DDP models that combine all 5x5 <consistency, persistency>
pairs shown in Table 2. To minimize the effort of annotating codes
for Transactional consistency and Scope persistency, we artificially
select transactions to be 5 client requests and scopes to be 10 client
requests. For our experiments, we use popular applications. Specif-
ically, we use the widely used memcached [11] application and
some simpler in-memory key-value stores such as HashTable, Map,
B-Tree [24] and BPlusTree [9]. We evaluate all of them with Yahoo!
Cloud Serving Benchmark (YCSB) [14] using different workloads
with varying read and write ratios. In our experiments, we warm
up the architectural state by running 1 billion instructions before
simulating a total of 10 billion instructions. For brevity, the results
show the average across all our applications.

8 EVALUATION

8.1 Performance Analysis

Figure 6 compares the performance of our 25 DDP models from
Table 2 by showing throughput (measured in client requests/second)
(a), mean read latency (b), mean write latency (c), mean access
latency (d), 95th percentile read latency (e), and 95th percentile
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write latency (f). We find it easier to organize the discussion based
on consistency models. Hence, in a plot, each group of bars is labeled
with a consistency model, and each bar in the group corresponds
to a persistency model, as shown in the legend. In a plot, all bars
are normalized to <Linearizable, Synchronous>. We run YCSB
workload-A, which has 50% read and 50% write requests.

8.1.1 General Observations. Focusing on throughput (Plot a), we
see that models with Linearizable consistency have the lowest
throughput, while those with Causal and Eventual consistency
have the highest (often 2-3x higher). Those with Transactional con-
sistency fail to deliver high throughput, mostly due to transaction
conflicts—since ~30% of the transactions conflict. In settings with
minimal conflicts, we expect models with Transactional consistency
to perform well.

Typically, throughput is inversely correlated with mean read
(Plot b) and write (Plot c) latencies. Models with Causal and Even-
tual consistency have low read and write latencies. The exception is
the combinations with Strict persistency. The latter stalls writes un-
til the updates are persisted everywhere. Models with Transactional
consistency have high write latencies, both because of conflicts—
a request will not be satisfied until the transaction restarts and
completes—and because writes bunch-up at Xaction end. This is
especially the case for strong persistency models such as Strict and
Synchronous. On the other hand, some models with Read-Enforced
consistency have high read latency. This is because, by enabling
more write overlapping than Linearizable consistency, they induce
more NVM pressure, causing reads to stall longer for writes to
persist. As a result, the throughputs of Read-Enforced consistency
in Plot a are only modestly higher than those of Linearizable con-
sistency

NVM pressure causes unexpected results. Specifically, under
Linearizable consistency, Synchronous persistency has a lower read
latency than Read-Enforced persistency. Read-Enforced persistency
allows more outstanding writes to NVM, which increases NVM
pressure and causes subsequent reads that conflict with those writes
to take longer.

The 95th percentile plots mostly magnify the effects described.
Models with Transactional consistency have a high write tail; some
of those with Read-Enforced consistency have high a read tail.

8.1.2 Interesting Combinations. The plots also show that, for a
fixed consistency model, which persistency model is used can make
a big difference, changing the throughput by up to 2x. In aggregate,
models with Strict persistency are the slowest ones, while those
with Eventual persistency perform the best.

However, we note that binding a strict persistency model with a
relaxed consistency model often delivers high throughput. In partic-
ular, the combinations <Causal, Synchronous> and <Causal, Read-
Enforced> are attractive because they deliver high throughput (Plot
a) while retaining medium durability and medium intuitiveness
(Table 4). Of course, models that include an Eventual consistency
or persistency model, such as <Causal, Eventual> or <Eventual,
Synchronous> can perform great. However, as shown in Table 4
for the latter, both durability and intuitiveness are low.

Models with Causal consistency have good performance, but
may require substantial buffering of writes with the more strict per-
sistency models [44]. This is because writes need to be buffered until
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Figure 6: Performance of the different DDP models. In a plot, each group of bars is labeled with a consistency model, and each
bar in the group corresponds to a persistency model as described in the legend. In a plot, all bars are normalized to <Linear,

Synchronous>.

all their happens-before updates are persisted. In our experiments,
we measure that Causal with Synchronous persistency needs about
1-2 orders of magnitude more buffered writes than with Eventual
persistency.

Across consistency models, using Read-Enforced persistency
delivers a throughput that is only slightly higher or typically lower
than using Synchronous persistency. As indicated above, this is
because Read-Enforced persistency forces many reads to stall. This
poor performance is in contrast to the results of Ganesan et al. [22].
The reason is that our experiments use a higher number of clients
(100 instead of 10), and we implement low-latency protocols with
no designated leader. As a result, we find that over 30% of the read
requests conflict with a yet-to-persist write in <Read-Enforced,
Read-Enforced>, instead of 5.1% in Ganesan’s work.

Overall, we conclude that different DDP models deliver quite dif-
ferent throughput values. In the extreme case, <Eventual, Eventual >
delivers a 3.3x higher throughput than <Linearizable, Synchronous>.

As shown in Table 4, however, performance is only one of our
considerations. Consequently, different applications may prefer
different DDP models. We discuss this issue in Section 9.

8.2 Sensitivity Analysis

To get a better understanding of what determines the performance,
we perform three sensitivity analyses. Due to space reasons, we
only show data for Linearizable and Causal consistency with all
the persistency models.

First, Figure 7 shows the throughput as we vary the number
of clients from 10 to 100 (the default) and to 150. The bars are
normalized to <Linearizable, Synchronous> with 100 clients. The
number of clients affects the traffic and the probability of conflicts
between reads and writes. The figure shows that, in most of the
DDP models, the throughput improves substantially as the number
of clients decreases. For example, <Linearizable, Synchronous>
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increase the throughput by 2.2x when going from 100 to 10 clients.
Conversely, the throughput decreases as the clients increase.

The exceptions are <Causal, Synchronous> and <Causal, Eventual >,

which are largely unaffected by the number of clients. The reason
is that, in these models, reads and writes do not stall. However, in
Causal with Strict persistency, writes stall until they are persisted;
in Causal with Read-Enforced persistency, conflicting reads stall;
and in Causal with Scope persistency, reads and writes stall until
the scope persists.

[-Synchronous B Strict [ Read-Enforced [JScope [JEventual

il ll w

Linear ‘ Causal ‘ Linear ‘ Causal ‘ Linear ‘ Causal
100-clients 150-clients

10-clients

Figure 7: Sensitivity analysis for different clients.

Although not shown in the figure, we also run Transactional
consistency. The experimental results show that, as the number of
clients reduces from 100 to 10, the number of transaction conflicts
decreases by roughly 50%, and Transactional consistency becomes
more competitive.

Figure 8 shows the throughput as we vary the NIC-to-NIC round-
trip latency from 500ns to 1ps (the default), and to 2us. All bars are
normalized to <Linearizable, Synchronous> with 1us. The figure
shows that the network latency affects mostly the models with
Linearizable consistency, while those with Causal consistency are
barely affected. The former are affected because network transfer is
in the critical path. For example, the throughput of <Linearizable,
Synchronous> decreases by 12% when going from 1us to 2us. Mod-
els with Causal consistency are not affected because updates are
generally communicated to other servers in the background.

[-Synchronous B Strict @ Read-Enforced [1Scope EIEventuall

Linear Causal Linear Causal Linear Causal

0.5us lus 2us

Figure 8: Sensitivity analysis for different NIC-to-NIC
round-trip latencies.

Figure 9 shows the throughput as we vary the relative fractions
of reads and writes in the workload. We consider workload-B (95%
reads and 5% writes), workload-A (the default, which has 50% reads
and 50% writes), and our defined workload-W (95% writes and 5%
reads). All bars are normalized to <Linearizable, Synchronous> for
workload-A. From the figure, we see that the more read-intensive a
workload is, the less affected by the consistency and persistency
models it is. This is because such models dictate when writes are
propagated and persisted. Reads are affected indirectly.

Kokolis, et al.
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Figure 9: Sensitivity analysis with different relative frac-
tions of reads and writes.

9 IMPLICATIONS FOR APPLICATIONS

Application developers choose the consistency model according
to their needs. Our evaluation in Section 8.1 has suggested which
persistency models should go with which consistency models and,
therefore, which DDP models to use. We now summarize the main
insights.

Latency-sensitive applications that can tolerate a certain level of
data staleness such as web browsing and social networking often
use Eventual consistency [1, 66]. In this case, using Synchronous
persistency is a good choice in terms of performance (Figure 6(a)),
programmability, and implementability (Table 4).

For consistency-sensitive applications that require bounded stal-
eness but can accept modest latencies, such as certain web search
services [66, 69], stricter consistency models such as Read-Enforced
consistency are good choices. In this case, Figure 6(a) suggests to
combine them with Scope or Eventual persistency, which results in
high throughput and low tail latency. Some of these applications
aggregate data from thousands of anonymous users and, therefore,
the loss of a certain amount of recent data is acceptable.

Applications that want to attain both reasonable consistency
guarantees and high performance such as photo sharing and news
readers [38, 44] often use Causal consistency. In this case, Figure 6(a)
suggests to use Synchronous persistency. In fact, the figure shows
that Causal consistency delivers some of the best performance of all
cases in combination with multiple persistency models. Therefore,
developers can select the appropriate persistency model based on
the data durability requirements of their application.

Applications that require transactional guarantees [15, 19, 46, 75]
such as Google’s globally distributed Spanner database [15] use
a form of Transactional consistency. This consistency model can
deliver high throughput, but its performance suffers if transac-
tion conflicts are frequent. In this case, Figure 6 shows that using
Read-Enforced persistency is not a good choice, since reads end-up
suffering long stalls. Other persistency models such as Scope or
Eventual should be used.

Many systems use hybrid consistency models [1, 36, 40, 56, 66]—
e.g., Linearizable or Read-Enforced consistency in a local cluster,
and Eventual consistency across the entire distributed system in
a data center [40]. In this case, our results suggest using Scope or
Eventual persistency for the local cluster, and Synchronous persis-
tency across the system.

Generally, we find that Causal consistency combined with either
Synchronous or Eventual persistency is highly competitive, and
robust to increases in number of clients, network latencies, and
write traffic. In these DDP models, reads and writes do not stall.
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Beyond this, models combining strong consistency with weak per-
sistency, or weak consistency with strong persistency are typically
best. Finally, as RDMA advances improve remote communication,
and NVM usage speeds-up durability, companies will increasingly
favor stronger consistency models and stronger persistency models,
respectively.

Irrespective of the DDP model, a recovery algorithm is invoked
on a crash. The complexity of the recovery is higher in the weaker
models than in the stricter ones. For example, strict models like
<Linearizable, Synchronous> have a simple recovery process be-
cause all nodes have the same persistent view of the data. On the
other hand, weaker DDP models such as those with Eventual con-
sistency or persistency may need an advanced recovery algorithm,
such as a voting-based one [10].

10 RELATED WORK

Distributed Consistency and Persistency Models. Many dis-
tributed data consistency models have been studied over the past
decades (e.g., [4, 7, 16, 35, 38, 64, 69]). However, few of them have
decoupled the discussion of data consistency from data durabil-
ity. With the advent of NVM, memory persistency models have
been proposed [34, 53]. They mainly target a single machine with a
hardware-controlled cache hierarchy. Recently, Katsarakis et al. [33]
developed Hermes, a broadcast-based replication protocol for in-
memory datastores. Hermes uses Linearizable consistency and does
not persist data to durable storage. It relies on remote replicas for
data recovery, which may cause long recovery delay and even data
loss upon full datacenter crashes [22, 79]. Ganesan et al. [22] pro-
posed read-enforced persistency to attain a strong model with low
performance overhead. In this work, we decouple consistency from
persistency in distributed systems and show how they interact.
Distributed NVM Systems. Recently, many distributed systems
have been built based on persistent memory (e.g., [20, 41, 60, 67, 76,
77,79, 80]). For instance, FileMR [76, 77] developed a distributed
NVM file system through RDMA. FaRM [20] implemented a dis-
tributed transactional system with battery backed DRAM and RDMA,
which supports strict serializability and data durability. Most of
these distributed systems follow one of the conventional distributed
data consistency models, and develop optimization techniques to
reduce remote persistency overhead. We believe our paper will help
the future development of such systems by offering insights into
DDP models.

Network Support for NVM. To improve the performance of re-
mote data persistency, some architectural techniques have been
proposed [26, 63, 65, 76]. Hu et al. [26] present persistence paral-
lelism techniques to improve the network bandwidth utilization
using RDMA. Industry plans to extend RDMA to support atomic
write and flush operations for NVM [63]. Our work is orthogonal,
and can benefit from such hardware. The DDP models we propose
can take advantage of network hardware optimizations.

11 CONCLUSION

This paper proposed the concept of Distributed Data Persistency
(DDP) model, which is the binding of the memory persistency model
with the data consistency model in a distributed system. We rea-
soned about the interaction between consistency and persistency
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using the Visibility and Durability points. We designed low-latency
distributed protocols for DDP models that combine five consis-
tency models with five persistency models. For the resulting DDP
models, we studied the trade-offs between performance, durability,
intuitiveness, programmability, and implementability.

We found that, in general, models combining strong consistency
with weak persistency, or weak consistency with strong persistency
are typically highly competitive. In addition, Causal consistency
combined with different memory persistency models is often a good
choice.
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